Tìm các cặp \(\left(x,y\right)\)nguyên thỏa mãn \(\left|4y^2-3\right|+\left|5-2x\right|=2013\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn \(x\left(1+x+x^2\right)=4y\left(y-1\right)\)
Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).
Xét \(x\ne0\). Khi đó \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.
(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).
Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).
Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4
(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)
Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.
Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).
Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).
Trường hợp 2 ngược lại.
Tới đây bạn tự giải được nha.
\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)
\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)
\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)
\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)
\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)
đến đây tự làm tiếp nhé
Có: (1) |
Vì , nên từ và chẵn. |
Giả sử lẻ và |
Vì là số chính phương, nên và cũng là hai số chính phương. |
Do |
Khi , có . Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là: |
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
Tìm các cặp số nguyên (x,y) thỏa mãn:
\(\left|x+2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)
\("="\Leftrightarrow\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)
Tìm tất cả các cặp số nguyên x,y thỏa mãn đẳng thức : \(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)