\(|2x+3|+|2x-1|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm x, y \(\inℤ\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1
\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{x.\left(x+1\right)}=\frac{49}{50}\)
\(\frac{2x+3}{x-1}\)có giá trị là số nguyên \(\left(x\inℤ,x\ne0\right)\)
\(\frac{x-4}{y-3}=\frac{4}{3}\)và \(x-y=5\)\(\left(y\ne3\right)\)
Tìm x,y nguyên dương để: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\left(x+3\right)^2+\left(y-1\right)^2< 4\left(x;y\inℤ\right)\)
\(\left(x+3\right)^2.\left(y-3\right)=-4\left(x;y\inℤ\right)\)
đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Tìm x, y nguyên dương để : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
Ta có : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\) => \(\frac{5}{8}-\frac{y}{2}=\frac{1}{x}\)
=> \(\frac{5-4y}{8}=\frac{1}{x}\) => \(\left(5-4y\right)x=8\)
=> 5 - 4y; x là ước của 8
Ta có bảng :
5 - 4y | 1 | 2 | 4 | 8 |
x | 8 | 4 | 2 | 1 |
y | 1 | 3/4 | 1/4 | -3/4 |
Vì x,y nguyên dương => x = 8 ; y = 1
Vậy x = 8; y = 1 là 2 giá trị cần tìm
Study well ! >_<
Tìm x,y,z biết:
a) \(\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2+y^2+z^2=116\)
c)\(||x-2|-3|=4\)
d) \(xy+2x-y=5\left(x,y,z\inℤ\right)\)
đ) \(|x-2|+|3-2x|=2x+1\)
e)
a
\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow VT\ge0\)
Dấu "=" xảy ra tại \(x=z=1;y=2\)
b
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có:
\(x^2+y^2+z^2=116\)
\(\Leftrightarrow4k^2+9k^2+16k^2=116\)
\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)
Thế ngược lên trên,àm nốt
c
\(\left||x-2|-3\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
d
\(xy+2x-y=5\)
\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Lập bảng làm nốt
đ
Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v
\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)
\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)
\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)
Chia khoảng đi nha !
P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Tìm x và y biết:
d)\(-1\frac{2}{3}-\left(\left|2x\right|+\frac{5}{6}\right)=\)\(-2\)e)\(\left(-\frac{1}{2}+\frac{1}{3}\right):\left|1-2x\right|-1\frac{1}{4}:\left(-\frac{5}{8}\right).\left(-\frac{1}{2}\right)^2=\frac{1}{3}\)
c)\(\left|2x-1\right|+\left|2y+1\right|+\left|2x-y\right|=0\)b)\(\left|2x-1\right|=2x-1\)
a)\(\left|x-3\right|=x+4\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2y\left(4y^2+3x^2\right)=x^4\left(x^2+3\right)\\2012^x\left(\sqrt{2y-2x+5}-x+1\right)=4024\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Bài tập chỉ mang tính giải trí, ^^
Cho các số x, y dương. Tìm gi{ trị nhỏ nhất của biểu thức:
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^2+1}-1}+\frac{\left(2x+y\right)\left(y+2x\right)}{4}-\frac{8}{3\left(x+y\right)}\)
bạn Kiệt có đánh sai chỗ nào ko vậy :)). mình thấy có 1 lỗi :)).
Đặt \(a=2x+y;b=2y+x\) \(\left(a,b>0\right)\)
Khi đó : \(P=\frac{2}{\sqrt{a^3+1}-1}+\frac{2}{\sqrt{b^3+1}-1}+\frac{ab}{4}-\frac{8}{a+b}\)
Cô-si , ta có : \(\sqrt{a^3+1}=\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\frac{a+1+a^2-a+1}{2}=\frac{a^2+2}{2}\)
\(\Rightarrow\sqrt{a^3+1}-1\le\frac{a^2}{2}\)
Tương tự : \(\sqrt{b^3+1}-1\le\frac{b^2}{2}\)
Mặt khác : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}\Rightarrow-\frac{8}{a+b}\ge\frac{-2}{a}-\frac{2}{b}\)
\(P\ge\frac{4}{a^2}+\frac{4}{b^2}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}=\left(\frac{4}{a^2}+1\right)+\left(\frac{4}{b^2}+1\right)+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2\)
\(\ge\frac{4}{a}+\frac{4}{b}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2=\frac{2}{a}+\frac{2}{b}+\frac{ab}{4}-2\ge3\sqrt[3]{\frac{2}{a}.\frac{2}{b}.\frac{ab}{4}}-2=1\)
Vậy GTNN của P là 1 \(\Leftrightarrow a=b=2\Leftrightarrow x=y=\frac{2}{3}\)
Mình nghĩ đề sửa là:
Cho các số x,y nguyên. Tìm GTM của biểu thức
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)
Cách làm giống @Thanh Tùng DZ@ nên không trình bày lại
Bài 1: Tìm x,y:
a) |x - 1| + |x + 3| = 4
b) |2x + 3| + |2x - 1| = \(\frac{8}{2\left(y-5\right)^2+2}\)
c) |x + 3| + |x + 1| = \(\frac{16}{\left|y-2\right|+\left|y+2\right|}\)
Bài 2: Tìm số nguyên x,y, biết:
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
b) \(x^2-2xy+y=0\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước