Cho biểu thức: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Tính giá trị của A khi \(x=\frac{16}{9};x=\frac{25}{9}\)
b, Tìm x để A = 5
c, Tìm \(x\in Z\)để \(A\in Z\)
cần gấp trong hôm nay!! Ai đúng mk tik nha
Cho biểu thức
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
1. Rút gọn biểu thức A
2. Tính giá trị của A tại \(x=\frac{25}{16}\)
3. Với giá trị nào của x thì biểu thức A nhận giá trị âm
4. Tính giá trị của A sau khi \(x=\sqrt{7-2\sqrt{6}}+3\)
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
cho biểu thức A= \(\frac{\sqrt{x+1}}{\sqrt{x-1}}\)
a)tính giá trị của A tại x=16/9 và 25/9
b)tính giá trị của x để A=5
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho Biểu Thức
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) tính Giá trị của A tại \(x=\frac{16}{9};x=\frac{25}{9}\)
b)Tính gia trị của x để A=5
a) x=16/9 => A = 6
x=25/9 => A = 3
b) A = 5 (=) x = 35/25
k cho mik nha
A = căn x +1 trên căn x -1
A = căn x - 1 + 3 trên căn x - 1
A = 1 cộng vs 3 trên căn x - 1
thay x = 16/9
A = 1+ vs 3 trên căn 16/9 -1
A = 1 + vs 3 trên 4/3 - 1
A = 1+ vs 3 trên 1/3
A = 1+ vs 9
A= 10
tương tự vs x =25/9
A=5
=> 5 =1 + vs 3 trên căn x -1
4 = 3 trên căn x -1
căn x-1 = 3/4
căn x = 7/3
x = 49/9
đúng đấy
bạn DUY ĐẠT ơi , tại sao căn x - 1 + 3 lại = đc căn x - 1 . Phải là căn x - 1 +2 nhỉ
Ai đó giúp mk vs !
1/ Cho biểu thức \(A=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
Tính giá trị của A khi x=36
2/ rút gọn biểu thức \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
3/ Với các biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A-1) là số nguyên
GIÚP MÌNH VỚI!!!!!! MAI MÌNH NỘP BÀI RỒI!!!!!!!!!!1
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )
Cho biểu thức A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị của A tại x=\(\frac{16}{9}\)và x=\(\frac{25}{9}\)
b) Tìm giá trị của x để A=5
\(\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)
a rút gọn biểu thức
b, tính giá trị của biểu thức P khi x = \(24-16\sqrt{2}\)
\(=\frac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
x=\(24-16\sqrt{2}=4^2-2.4.\sqrt{8}+\left(2\sqrt{2}\right)^2=\left(4-2\sqrt{2}\right)^2\)
a) \(P=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1}{x-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{x-1}\)
\(P=\frac{\sqrt{x}+1}{x-1}\)
vay \(P=\frac{\sqrt{x}+1}{x-1}\)
b) thay vao P ta duoc:
\(P=\frac{\sqrt{24-16\sqrt{2}}+1}{24-16\sqrt{2}-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2}+1}{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}-4\right)^2}+1}{\left(2\sqrt{2}-4\right)^2-1^2}\)
\(P=\frac{2\sqrt{2}-4+1}{\left(2\sqrt{2}-4-1\right)\left(2\sqrt{2}-4+1\right)}\)
\(P=\frac{2\sqrt{2}-3}{\left(2\sqrt{2}-5\right)\left(2\sqrt{2}-3\right)}\)
\(P=\frac{1}{2\sqrt{2}-5}\)
vay \(P=\frac{1}{2\sqrt{2}-5}\)
Cho biểu thức \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức A tại x=\(\frac{16}{9}\) và x=\(\frac{25}{9}\)
b) Tìm giá trị x để A=5
c) Tìm xϵ Z để A có giá trị là một số nguyên dương
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)