các bạn giúp mình với
tìm giá trị nguyên x,y thỏa mãn A=x2+xy+x+y+1
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm các giá trị x,y nguyên thỏa mãn :
a) x^2 - xy = 6x -5y-
b) x^2 + xy + y^2 = x^2 y^2
các bạn giải hộ mik với
với x,y >0 , thỏa mãn x+4/y ≤ 2 . tìm giá trị lớn nhất của biểu thức P= 2xy/ x2 + y2 + 3xy .
giúp mình với ạ mấy bạn .
bài 1:
a) Tìm các cẶP số nguyên x; y thỏa mãn hệ thức: ( 2x - 1 ) (y + 4 ) = 11
b) Tìm các giá trị x;y nguyên thỏa mãn: xy = 3y - 5x = 9
xy + 3y - 5x = 9 nhé...mình viết nhầm ạ
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a)(2x-1)(y+4)=11
Ta có:11=1.11=11.1=(-1).(-11)=(-11).(-1)
Do đó ta có bảng sau:
y+4 | -11 | -1 | 1 | 11 |
2x-1 | -1 | -11 | 11 | 1 |
2x | 0 | -10 | 12 | 2 |
x | 0 | -5 | 6 | 1 |
y | -15 | -5 | -3 | 7 |
Vậy các cặp (x;y) TM là:(0;-15)(-5;-5)(6;-3)(1;7)
cho x,y nguyên dương thỏa mãn xy-5x+2y=30
khi đó tổng giá trị x tìm được là ...
nhanh giúp mình bạn ơi
\(xy-5x+2y=30\)
\(\Rightarrow\left(xy-5x\right)+\left(2y-10\right)=20\)
\(\Rightarrow x\left(y-5\right)+2\left(y-5\right)=20\)
\(\Rightarrow\left(x+2\right)\left(y-5\right)=20\)
Tìm các cặp x ,y nguyên thỏa mãn. x2 + xy - 6y2 + x + 13y = 17. Giải giúp với ạ !
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)+(-6y^2+13y-17)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(y+1)^2-4(-6y^2+13y-17)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 25y^2-50y+69=t^2$
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=t^2-(5y-5)^2=(t-5y+5)(t-5y-5)$
Đến đây là dạng pt tích đơn giản rồi.
Tìm các giá trị nguyên x và y thỏa mãn x^2-y-xy-1=1
\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=1\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=1\)
\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=1\)
x+1 | -1 | 1 |
x-y-1 | -1 | 1 |
x | -2 | 0 |
y | -2 | -2 |
Vậy \(\left(x;y\right)=\left(-2;-2\right);\left(0;-2\right)\)
a) Tìm x: |x-1| + |x-3| =4
b) tìm cặp (x,y) với x,y là các số nguyên thỏa mãn :xy+3x-y=6
các bạn giải chi tiết giúp mình với, tích cho .
thanks nhiều!
Tát cho mày cho mày dậy
B1: Tính giá trị của biểu thức sau:
C= 5x-3y/2x+y biết x/y= 1/2
B2: Tìm các số nguyên x,y, thỏa mãn x/8 - 1/4= 1/y
B3: tìm x,y biết:
x+2/3= 12/2+x ( với x khác -2)
các bạn giúp mình với, mình đang cần gấp ạ!