giải pt nghiệm nguyên:
\(16\left(x^3-y^3\right)=15xy+371\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải phương trình nghiệm nguyên: 16(x3-y3)=15xy+371
Giải phương trình nghiệm nguyên: 16(x3-y3)=15xy+371
Tìm nghiệm nguyên dương:
16(x3-y3)=15xy+371
Giải pt nghiệm nguyên dương: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Giải pt nghiệm nguyên; \(\left(x+y\right)\left(x+y-xy-2\right)=3-2xy\)
chụp cho tớ 20 bài bđt đi chi
Giải pt nghiệm nguyên: \(x^2\left(y^2-3\right)=y\left(y-x\right)\)
Giải PT nghiệm nguyên \(\left(x-5\right)^3=y^3+y^2+y+1\)
Giải pt nghiệm nguyên: \(y\left(x-2\right)=x^2+3\)
\(y\left(x-2\right)=x^2+3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)
\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)
Do \(x,y\)nguyên nên \(x-2\)và \(y-x-2\)nguyên
Ta lập bảng sau:
\(x-2\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(x\) | \(3\) | \(9\) | \(1\) | \(-5\) |
\(y-x-2\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(y\) | \(12\) | \(12\) | \(-4\) | \(-4\) |
Vậy....
p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)
Xét x=3 thì pt vô nghiệm
xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)
Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá
tìm nghiệm nguyên của phương trình 16(x-y)(x2+xy +y2)=15xy + 371
Đặt \(x-y=a;xy=b\)
\(\Rightarrow16a^3+48ab-15b=371\)
\(\Rightarrow b=\frac{371-16a^3}{48a-15}\)
\(\Rightarrow16a^3-371⋮48a-15\)
Dùng phép chia đa thức ..... ta được :
\(284553⋮48a-15\)
Mà : \(284533=3^5\cdot1171\)
\(48a-15\ge33\)
Dùng đồng dư 48 .....
\(\Rightarrow\left[{}\begin{matrix}48a-15=3^4\\48a-15=1171\cdot3^3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=2,b=3\\a=659,b=-144829\end{matrix}\right.\)
Dùng định lý Vi-et đảo loại được trường hợp 2
\(\Rightarrow a=2;b=3\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy ....
#Kaito#