Những câu hỏi liên quan
H24
Xem chi tiết
H24
3 tháng 3 2016 lúc 15:39

Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11

Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n.   (1)

Có:

2^4n=.......6=......5+1=5x +1 

Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1

2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)

Suy ra (2^5)^x +1 chia hết cho 11

=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11

hay 2^2^4n +2 chia hết cho 11

Lại có 2^2^4n đồng dư với -2 ( mod 11)

Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)

Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)

Vậy 2^2^4n+1+7 chia hết cho 11

Bình luận (0)
VH
Xem chi tiết
NH
Xem chi tiết
NB
Xem chi tiết
ML
28 tháng 10 2021 lúc 15:43

giời ơi lớp 6 mà cũng ko biết, bó tay

Bình luận (0)
 Khách vãng lai đã xóa
TP
28 tháng 10 2021 lúc 15:51

ủa bn Minh Anh 6A Lê bn ấy ko biết mới hỏi chứ

Bình luận (0)
 Khách vãng lai đã xóa
ML
29 tháng 10 2021 lúc 20:04

 mai phương học trg nào đấy

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
HQ
15 tháng 6 2017 lúc 10:45

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

Bình luận (0)
DQ
Xem chi tiết
H24

Ta có: 

\(2^{4n}-1\)

\(=\left(2^4-1\right)\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)

\(=15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...+1\right)\)

Mà \(n\in N\)

\(\Rightarrow15\left(2^{4\left(n-1\right)}+2^{4\left(n-2\right)}+...1\right)⋮15\)

\(\Rightarrow2^{4n}-1⋮15\forall n\in N\)

Bình luận (0)
PT
4 tháng 1 2018 lúc 20:37

Ta có:

\(16\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^4\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^{4n}\equiv1\left(mod15\right)\)

\(\Leftrightarrow2^{4n}-1\equiv0\left(mod15\right)\)

\(\Leftrightarrow2^{4n}-1⋮15\)

Bình luận (1)
DT
Xem chi tiết
TT
Xem chi tiết
CM
Xem chi tiết