Những câu hỏi liên quan
HT
Xem chi tiết
TT
19 tháng 4 2021 lúc 20:28

Ta có: abcdeg=10000ab+100+cd+eg

                      =(ab+cd+eg)(10000+101)

                              theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm) 

                   Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

                           

Bình luận (0)
HP
Xem chi tiết
SN
5 tháng 1 2017 lúc 10:14

abcdeg = ab . 10000 + cd . 100 + eg

ab . 9999 + 1 . ab + cd . 99 + cd + eg 

ab . 11 . 909 + cd . 11 . 9 + ( ab + cd + eg )

= 11 . ( ab + 909 + cd . 9 ) + ( ab + cd + eg )

Vì 11 . ( ab . 909 + cd . 9 ) chia hết cho 11

            ab + cd + eg chia hết cho 11

Nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

Bình luận (0)
OO
5 tháng 1 2017 lúc 10:08

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

Bình luận (0)
SN
5 tháng 1 2017 lúc 10:17

o0o đồ khùng o0o làm chả hiểu đâu

Cách của mình rõ hơn nhiều

Tách ra số abcdeg còn hơn

Bình luận (0)
NB
Xem chi tiết
TT
19 tháng 7 2015 lúc 8:57

 abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)

Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11

=> abcdeg chia hết cho 11 (đpcm)

Bình luận (0)
TV
Xem chi tiết
NQ
11 tháng 1 2018 lúc 21:43

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

Bình luận (0)
ST
11 tháng 1 2018 lúc 21:44

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

Bình luận (0)
SG
11 tháng 1 2018 lúc 21:45

abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)

Mà ab + cd + eg chia hết cho 11

Suy ra abcdeg chia hết cho 11 khi ab + cd + eg chia hết cho 11 ( do 9999ab+99cd chia hết cho 11)

Tk mình đi!

Bình luận (0)
MT
Xem chi tiết
PM
Xem chi tiết
NC
24 tháng 10 2018 lúc 8:16

abcdeg=ab.10000+cd.100+eg=ab+ab.9999+cd+cd.99+eg=(ab+cd+Eg)+ab.9999+cd.99 

Vì \(\overline{cd}.99\)chia hết cho 11

\(\overline{ab}.9999\)chia hết cho 11

\(\overline{ab}+\overline{cd}+\overline{eg}\)không chia hết cho 11

Vậy nên \(\overline{abcdeg}\)không chia hết cho 11

Bình luận (0)
PT
Xem chi tiết
SN
2 tháng 2 2017 lúc 21:22

Dễ mà bạn

câu a í

Bạn tham khảo một số bài toán đi

Bình luận (0)
PT
2 tháng 2 2017 lúc 21:23

ab+cd+eg = 10a+b+d+10e+g 

=10(a+c+e)+b+d+g chia hết cho 11 thì

a+c+e chia hết 11

b+d+g chia hết 11

Bình luận (0)
PT
2 tháng 2 2017 lúc 21:24

mình làm đc rùi

chỉ còn kết luận thôi

Bình luận (0)
TD
Xem chi tiết
DV
3 tháng 11 2015 lúc 22:13

Dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi: tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11. 
Theo giả thiết: 
ab+cd+eg = 10a + b + 10c +d + 10e +g = 11(a+ c+ e) + (b+d+g) - (a+ c+ e) chia hết cho 11 
=> (b+d+g) - (a+ c+ e) chia hết cho 11 
=> abcdeg chia hết cho 11 

Bình luận (0)
NH
Xem chi tiết
TB
21 tháng 11 2020 lúc 19:31

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

Bình luận (0)
 Khách vãng lai đã xóa