Những câu hỏi liên quan
TT
Xem chi tiết
H24
11 tháng 3 2018 lúc 20:36

\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)  

\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)

\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)

Bình luận (0)
TM
14 tháng 3 2018 lúc 18:00

ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1  

ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1

ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1

ƒ (x)=(x2+7x+10)(x2+7x+12)+1

ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1

ƒ (x)=(x2+7x+11)2−1+1

ƒ (x)=(x2+7x+11)2⇔đpcm

Bình luận (0)
CH
Xem chi tiết
NL
27 tháng 8 2017 lúc 17:11

 f(x) = x4 + 6x3 +11x+ 6x 

\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)

\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)

\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)

\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)

\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Bình luận (0)
NL
27 tháng 8 2017 lúc 17:14

b)Ta có

\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)

\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)

\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)

\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)

Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương 

Bình luận (0)
PL
Xem chi tiết
HU
22 tháng 2 2019 lúc 19:22

f(x)=ax2+bx+cf(x)=ax2+bx+c

f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c

⇒⇒ c là số nguyên

f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c

Vì c là số nguyên nên a + b là số nguyên (1)

f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c

Vì c là số nguyên nên 2(2a + b) là số nguyên

⇒⇒ 2a + b là số nguyên (2)

Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên

⇒⇒ b là số nguyên

Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.

#ks+Kbn= Add

#Uyên_Ami_BTS   >,<

#Taehyung_stan

Bình luận (0)
H24
22 tháng 2 2019 lúc 19:27

Ta có f(0) = a.0+ b.0+c =c

=> c là số nguyên

f(1) = a.12+ b.1+c=a +b + c = (a+)b+c

Vi c là số nguyên nên a+b là số nguyên (1)

f(2) = a.22+ b.2+c=2(2a+b)+c

=> 2(2a+b) là số nguyên

=>2a +b là số nguyên (2) 

Từ (1) và (2)

=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên

=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.

Bình luận (0)
TT
Xem chi tiết
TV
Xem chi tiết
NA
22 tháng 12 2022 lúc 21:51

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

Bình luận (1)
NA
22 tháng 12 2022 lúc 21:55

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

Bình luận (2)
H24
Xem chi tiết
H24
Xem chi tiết
CN
28 tháng 2 2020 lúc 15:13

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(0\right)=a0^2+0b+c\in Z\)

\(\Rightarrow c\in Z\)

\(f\left(1\right)=a1^2+1b+c=a+b+c\in Z\)

Mà \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)

\(f\left(2\right)=a2^2+2b+c=4a+2b+c=2\left(2a+b\right)+c\in Z\)

Vì \(c\in Z\Rightarrow2\left(2a+b\right)\in Z\)

\(\Rightarrow2a+b\in Z\left(2\right)\)

Từ (1) và (2) suy ra: \(\left(2a+b\right)-\left(a+b\right)\in Z\)

\(\Rightarrow2a+b-a-b\in Z\)

\(\Rightarrow a\in Z\)

Từ (1) suy ra \(b\in Z\)

Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên

có gì ko hiểu thì cứ hỏi tự nhiên ạ~

Bình luận (0)
 Khách vãng lai đã xóa
LC
28 tháng 2 2020 lúc 15:14

\(f\left(x\right)=ax^2+bx+c\left(1\right)\)

\(\Rightarrow f\left(0\right)=c\in Z\)( vì \(f\left(0\right)\in Z\))

\(\Rightarrow f\left(1\right)=a+b+c\left(4\right)\)Mà \(f\left(1\right)\in Z\)

\(\Rightarrow a+b+c\in Z\)mà \(c\in Z\)

\(\Rightarrow a+b\in Z\Rightarrow2a+2b\in Z\left(2\right)\)

Từ (1) \(\Rightarrow f\left(2\right)=4a+2b+c\in Z\)(vì \(f\left(2\right)\in Z\))

Mà \(c\in Z\)

\(\Rightarrow4a+2b\in Z\left(3\right)\)

 Từ (2) và (3)\(\Rightarrow2a\in Z\Rightarrow a\in Z\)

Từ (4) kết hợp a,c \(\in Z\Rightarrow b\in Z\)

\(\Rightarrow f\left(x\right)\)luôn nhân giá trị nguyên với mọi x nguyên

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 2 2020 lúc 15:17

Cách lm giống bn Châu mình lơ mơ quá, chả hiểu gì, mình thấy cậu tắt quá, bài của bạn kia dễ hiểu hơn nhiều ý!

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
LV
Xem chi tiết