Những câu hỏi liên quan
NA
Xem chi tiết
ST
16 tháng 4 2017 lúc 10:19

Vì A < 1

\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)

Vậy A < B

Bình luận (0)
NN
Xem chi tiết
HA
Xem chi tiết
ND
16 tháng 3 2018 lúc 20:21

ta có A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)=> 2017A =\(\frac{2017^{2018}+2017}{2017^{2018}+1}=1+\frac{2016}{2017^{2018}+1}\)(1)

B=\(\frac{2017^{2018}+1}{2017^{2019}+1}\)=> 2017B =\(\frac{2017^{2019}+2017}{2017^{2019}+1}=1+\frac{2016}{2017^{2019}+1}\)(2)

So sánh (1)với (2) ta thấy 2017A>2017B

=>A>B

Vậy A>B

Bình luận (0)
PQ
16 tháng 3 2018 lúc 20:11

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{2017^{2018}+1}{2017^{2019}+1}< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2017}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2016}+1\right)}=A\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

Bình luận (0)
MP
16 tháng 3 2018 lúc 20:34

Vi B = 2017^2019 > 2017^2018

=> B = 2017^2018 + 1/ 2017^2019 < 1                 chon m = 2016

Ta co: 2017^2018 + 1 + 2016/ 2017^ 2019  + 1 + 2016

=> B < 2017^2018 +  2016/ 2017^2019 + 2016 = 2017 . 1 + 2017^ 2017 . 2017/ 2017 .1 + 2017^2018 . 1

=> B < 2017  . ( 2017^2017 + 1 )/ 2017 . ( 2017^ 2018 . 1 ) = 2017^2017 +1 / 2017^2018 +1 = A

=> B < A

 Vay B < A

Bình luận (0)
AV
Xem chi tiết
DL
11 tháng 6 2018 lúc 8:24

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

Bình luận (0)
NO
Xem chi tiết
H24
2 tháng 7 2017 lúc 9:01

Vì phân số A\(=\frac{2016^{2017}+1}{2017^{2018}+1}< 1\) mà B\(=\frac{2017^{2018}+1}{2017^{2017}+1}>1\)

\(\Rightarrow\frac{2016^{2017}+1}{2017^{2018}+1}< 1< \frac{2017^{2018}+1}{2017^{2017}+1}\)

Vậy A<B

Bình luận (0)
H24
2 tháng 7 2017 lúc 8:57

a<1<b

=>A<b

Bình luận (0)
OM
2 tháng 7 2017 lúc 8:58

Nguyễn Thị Kim Oanh

a<1<b

=>a>b

Bình luận (0)
LL
Xem chi tiết
H24
7 tháng 11 2017 lúc 17:15

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

Bình luận (0)
PN
4 tháng 2 2018 lúc 21:45

lien quan vai

Bình luận (0)
NT
14 tháng 6 2018 lúc 9:43

bằng nhau

Bình luận (0)
A2
Xem chi tiết
H24
22 tháng 3 2019 lúc 20:44

Ta có 

A= \(\frac{2017^{2018}-3+4}{2017^{2018}-3}=1+\frac{4}{2017^{2018}-3}\)

B= \(1+\frac{4}{2017^{2018}-5}\)

vậy A > B

Bình luận (0)
LV
Xem chi tiết
NH
9 tháng 7 2023 lúc 23:40

C = \(\dfrac{2018^{2011}+1}{2018^{2019}+1}\)

20182011 < 20182019 ⇒ 20182011 + 1 < 20182019 + 1

⇒ C < 1

D = \(\dfrac{2018^{2017}}{2018^{2013}+1}\) 

Tử số D = 20182017 = 20182016.( 2017 + 1)

              = 20182016.2017 + 20182016 > 20182013 + 1

D > 1

Vì C < 1 < D 

Vậy C < D

 

 

Bình luận (0)
NT
9 tháng 7 2023 lúc 23:58

\(C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)

\(D=\dfrac{2018^{2017}}{2018^{2013}+1}=\dfrac{2018^{2013}.2018^4}{2018^{2013}+1}=\dfrac{\left(2018^{2013}+1-1\right).2018^4}{2018^{2013}+1}=2018^4-\dfrac{2018^4}{2018^{2013}+1}\)

mà \(2018^4< 2018^{2011}\)

\(\Rightarrow D=2018^4-\dfrac{2018^4}{2018^{2013}+1}< 2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}\)

mà \(2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}< C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)

\(\Rightarrow D< C\)

Bình luận (0)
HN
Xem chi tiết