So sánh:
\(C=\frac{2018^{2019}-1}{2018^{2018}-1}\)và\(D=\frac{2017^{2018}+1}{2017^{2017}+1}\)
so sánh:
A=\(\frac{2017^{2018}+1}{2017^{2019}+1}\);B=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)
Vì A < 1
\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)
Vậy A < B
So sánh: \(\frac{2017}{2018+2019}\)+ \(\frac{2018}{2017+2019}\)+ \(\frac{2019}{2017+2018}\)và 1
Bạn nào làm đúng mình tik cho
So sánh
A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)
\(B=\frac{2017^{2018}+1}{2017^{2019}+1}\)
ta có A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)=> 2017A =\(\frac{2017^{2018}+2017}{2017^{2018}+1}=1+\frac{2016}{2017^{2018}+1}\)(1)
B=\(\frac{2017^{2018}+1}{2017^{2019}+1}\)=> 2017B =\(\frac{2017^{2019}+2017}{2017^{2019}+1}=1+\frac{2016}{2017^{2019}+1}\)(2)
So sánh (1)với (2) ta thấy 2017A>2017B
=>A>B
Vậy A>B
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2017^{2018}+1}{2017^{2019}+1}< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2017}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2016}+1\right)}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Vi B = 2017^2019 > 2017^2018
=> B = 2017^2018 + 1/ 2017^2019 < 1 chon m = 2016
Ta co: 2017^2018 + 1 + 2016/ 2017^ 2019 + 1 + 2016
=> B < 2017^2018 + 2016/ 2017^2019 + 2016 = 2017 . 1 + 2017^ 2017 . 2017/ 2017 .1 + 2017^2018 . 1
=> B < 2017 . ( 2017^2017 + 1 )/ 2017 . ( 2017^ 2018 . 1 ) = 2017^2017 +1 / 2017^2018 +1 = A
=> B < A
Vay B < A
Bài 1 : So sánh M và N biết :
\(M=\frac{2017}{2018}+\frac{2018}{2019}\) và \(N=\frac{2017+2018}{2018+2019}\)
Bài 2 : So sánh A và B biết :
\(A=\frac{2017}{987654321}+\frac{2018}{24681357}\) và \(B=\frac{2018}{987654321}+\frac{2017}{24681357}\)
Bài 3 : So sánh :
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}\)với 4.
Bài 4 : So sánh phân số sau với 1 :
\(\frac{1991\times1999}{1995\times1995}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
so sánh A=\(\frac{2016^{2017}+1}{2017^{2018}+1}\)và B=\(\frac{2017^{2018}+1}{2017^{2017}+1}\)
Vì phân số A\(=\frac{2016^{2017}+1}{2017^{2018}+1}< 1\) mà B\(=\frac{2017^{2018}+1}{2017^{2017}+1}>1\)
\(\Rightarrow\frac{2016^{2017}+1}{2017^{2018}+1}< 1< \frac{2017^{2018}+1}{2017^{2017}+1}\)
Vậy A<B
so sánh A và B
A = \(\frac{2015}{2016}-\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\)
B=\(\frac{-1}{2015.2016}-\frac{1}{2017.2018}\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
Cho
A = \(\frac{2017^{2018}+1}{2017^{2018}-3}\)
B= \(\frac{2017^{2018}-1}{2017^{2018}-5}\)
So sánh A và B
Ta có
A= \(\frac{2017^{2018}-3+4}{2017^{2018}-3}=1+\frac{4}{2017^{2018}-3}\)
B= \(1+\frac{4}{2017^{2018}-5}\)
vậy A > B
sa sánh C= 2018^2011+1/ 2018^2019 +1 và D= 2018^2017 /2018^2013 +1
C = \(\dfrac{2018^{2011}+1}{2018^{2019}+1}\)
20182011 < 20182019 ⇒ 20182011 + 1 < 20182019 + 1
⇒ C < 1
D = \(\dfrac{2018^{2017}}{2018^{2013}+1}\)
Tử số D = 20182017 = 20182016.( 2017 + 1)
= 20182016.2017 + 20182016 > 20182013 + 1
D > 1
Vì C < 1 < D
Vậy C < D
\(C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)
\(D=\dfrac{2018^{2017}}{2018^{2013}+1}=\dfrac{2018^{2013}.2018^4}{2018^{2013}+1}=\dfrac{\left(2018^{2013}+1-1\right).2018^4}{2018^{2013}+1}=2018^4-\dfrac{2018^4}{2018^{2013}+1}\)
mà \(2018^4< 2018^{2011}\)
\(\Rightarrow D=2018^4-\dfrac{2018^4}{2018^{2013}+1}< 2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}\)
mà \(2018^{2011}-\dfrac{2018^4}{2018^{2013}+1}< C=2018^{2011}+\dfrac{1}{2018^{2019}+1}\)
\(\Rightarrow D< C\)
So sánh \(\frac{2017}{2018}+\frac{2018}{2019}và\frac{2015}{2016}+\frac{2016}{2017}\)