Những câu hỏi liên quan
HH
Xem chi tiết
DT
Xem chi tiết
TK
Xem chi tiết
NC
Xem chi tiết
TK
Xem chi tiết
KK
17 tháng 9 2015 lúc 12:43

yo

mình lớp 6A

là Dương Thu Hiền

Bình luận (0)
NA
Xem chi tiết
JY
Xem chi tiết
DH
26 tháng 8 2017 lúc 20:03

Ta có : \(x^2+3x-10=x^2+5x-2x-10=x\left(x+5\right)-2\left(x+5\right)=\left(x-2\right)\left(x+5\right)\)

Vì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\) nên

 \(\left(ax^3+bx^2+5x-50\right)=\left(x-2\right)\left(x+5\right)H\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}2^3a+b.2^2+5.2-50=0\\-5^3a+b.\left(-5\right)^2+5.\left(-5\right)-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b+10-50=0\\-125a+25b-25-50=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8a+4b=40\\-125a+25b=75\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)

Vậy \(a=1;b=8\)

Bình luận (0)
PM
Xem chi tiết
HB
13 tháng 7 2018 lúc 21:27

ax^3 + bx^2 + 5x - 50= (x^2 + 3x - 10)(ax+b-3)+(5+10a-3b-9a)x-50+10b-30a 
 dể ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
=>(5+10a-3b-9a)x-50+10b-30a =0
<=>{5+a-3b=0
      {-50+10b-30a =0
<=>{a=-5/4
      {b=5/4

Bình luận (0)
TD
13 tháng 7 2018 lúc 21:29

Cách 1 : Đặt tính chia theo đa thức 1 biến đã sắp xếp .

Cách 2 :

Xét \(ax^3+bx^2+5x-50\)

\(=\left(x+5\right)\left(x-2\right).Q_x\) lần lượt cho 

\(x=-5\)

và \(x=2\)

Ta có được :

\(\hept{\begin{cases}-125a+25b=75\\8a+4b=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-5a+b=3\\2a+b=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=8\end{cases}}\)

Bình luận (0)
HH
13 tháng 7 2018 lúc 21:40

Ta có \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\)

=> Tồn tại đa thức Q (x) sao cho \(ax^3+bx^2+5x-50=\left(x^2+3x-10\right)Q\left(x\right)\)

=> Q (x) có bậc 1

=> \(Q\left(x\right)=mx+n\)

=> \(ax^3+bx^2+5x-50=\left(x^2+3x-10\right)\left(mx+n\right)\)

Ta có \(\hept{\begin{cases}x^2.mx=mx^3=ax^3\\-10n=-50\end{cases}}\)<=> \(\hept{\begin{cases}m=a\\n=5\end{cases}}\)

=> \(ax^3+bx^2+5x-50=\left(x^2+3x-10\right)\left(ax+5\right)\)

=> \(ax^3+bx^2+5x-50=ax^3+5x^2+3ax^2+15x-10ax-50\)

=> \(ax^3+bx^2+5x-50=ax^3+\left(5+3a\right)x^2+\left(15-10a\right)x-50\)

Đồng nhất hệ số: \(\hept{\begin{cases}5+3a=b\\15-10a=5\end{cases}}\)<=> \(\hept{\begin{cases}5+3a=b\\5\left(3-2a\right)=5\end{cases}}\)<=> \(\hept{\begin{cases}5+3a=b\\3-2a=1\end{cases}}\)<=> \(\hept{\begin{cases}b=8\\a=1\end{cases}}\)

Vậy khi \(\hept{\begin{cases}b=8\\a=1\end{cases}}\)thì \(\left(ax^3+bx^2+5x-50\right)⋮\left(x^2+3x-10\right)\)

Bình luận (0)
AN
Xem chi tiết
NT
18 tháng 7 2019 lúc 21:08

\(a) x^4 + ax^2 + b \\ = x^4 + 2x^2 + b + ax^2 - 2x^2\\ = (x^2 + 1)^2 - x^2 + x^2(a + b)\\ = (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\ = (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1). \)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0

\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\ \Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\ = (x^2 + 3x - 10)(cx + d) \\ = ax^3 + bx^2 + 5x - 50\\ = cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)

\(b = d + 3c\\ 5 = 3d - 10c\\ -50 = -10d\)
Vậy \(a = 1, b = 8\)

\(d)f(x)=ax^3+bx-24\)

Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)

f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)

Giải ra ta được a = 2; b = -26

Bình luận (0)