1/240-...-1/30-1/20-1/12-1/6-1/2
1/6+1/12+1/20+1/30+1/42...+1/240
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{240}\)
= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{15.16}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{15}-\frac{1}{16}\)
= \(\frac{1}{2}-\frac{1}{16}\)
= \(\frac{7}{16}\)
Tính: B=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
Tính
1. A= 1/2+1/6+1/12+/1/20+1/30+1/42+1/56
2. B = 3/2+5/6+7/12+-9/20+11/30-13/42+15/56
A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8
A = 1 + ( -1/2 + 1/2 ) + ( -1/3 + 1/3 ) + ( -1/4 + 1/4 ) + ( -1/5 + 1/5 ) + ( -1/6 + 1/6 ) + ( -1/7 + 1/7 ) - 1/8
A = 1 + 0 + 0 + 0 + 0 + 0 + 0 - 1/8
A = 1 - 1/8
A = 7/8
* Sửa đề tí nhé
B = 3/2 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56
B = 3/1.2 - 5/2.3 + 7/3.4 - 9/4.5 + 11/5.6 - 13/6.7 + 15/7.8
B = 3 - 3/2 - 5/2 - ( -5/3 ) + 7/3 - 7/4 - 9/4 - ( -9/5 ) + 11/5 - 11/6 - 13/6 - ( -13/7 ) + 15/7 - 15/8
B = 3 - 3/2 - 5/2 + 5/3 + 7/3 - 7/4 - 9/4 + 9/5 + 11/5 - 11/6 - 13/6 + 13/7 + 15/7 - 15/8
B = 3 + ( -3/2 - 5/2 ) + ( 5/3 + 7/3 ) + ( -7/4 - 9/4 ) + ( 9/5 + 11/5 ) + ( -11/6 - 13/6 ) + ( 13/7 + 15/7 ) - 15/8
B = 3 + -4 + 4 + -4 + 4 + -4 + 4 - 15/8
B = 3 + 0 + 0 + 0 - 15/8
B = 3 - 15/8
B = 9/8
1/2 + 1/6 + 1/12 + 1/20 + 1/30
\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}=\dfrac{5}{6}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}=\dfrac{5}{6}\)
#Ayumu
1/2+1/6+1/12+1/20+1/30+1/42
=(1/1-1/2)+(1/2-1/3)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7) =(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+(1/5-1/5)+(1/6-1/6)+(1/1-1/7) = 0+0+0+0+0+6/7 =6/7
`x−1/2−1/6−1/12−1/20=1/30`
\(x=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{6}\)
x-1/2-1/6-1/12=1/30+1/20
x-1/2-1/6-1/12=1/12
x-1/2-1/6=1/12+1/12
x-1/2-1/6=1/6
x-1/2=1/6+1/6
x-1/2=1/3
x=1/3+1/2
x=2/6+3/6
x=5/6
`x - 1/2 - 1/6 - 1/12 - 1/20 = 1/30`
`=> x = 1/30 + 1/20 + 1/12 + 1/6 + 1/2`
`=> x = 5/6`
vậy `x = 5/6`
Tập hợp ước số của số 60 là:
A. Ư(60) = {1; 2; 3; 5; 12; 20; 30; 60}
B. Ư(60) = {1; 2; 3; 4; 15; 20; 30; 60}
C. Ư(60) = {1; 2; 3; 4; 5; 12; 15; 20; 30; 60}
D. Ư(60) = {1; 2; 3; 4; 5; 6; 10; 12 15; 20; 30; 60}
M=1/2+1/6+1/12+1/20+1/30+1/42
\(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{6.7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}=1-\dfrac{1}{7}=\dfrac{6}{7}\)
A=1/2+1/6+1/12+1/20+1/30......1/9900
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(\cdot\) LÀ DẤU \(\times\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)
A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)