tìm x,y thuộc N* thỏa mãn
\(x^3-y^3=95\left(x^2+y^2\right)\)
tìm các số tự nhiên x,y thỏa mãn \(x^3-y^3=95\left(x^2+y^2\right)\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Cho x,y thuộc Z thỏa mãn
\(\left(2x-3\right)^2+\left|y\right|=1\)
Tìm số cặp x,y thỏa mãn
=>\(\hept{\begin{cases}2x-3=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}\)
Cho x,y là các số thực thuộc (0;1) thỏa mãn \(\frac{\left(x^3+y^3\right)\left(x+y\right)}{xy}=\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+4xy-x^2-y^2\)
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)
Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)
và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)
\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)
Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)
\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)
\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\), \(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)
Xét hàm số :
\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) , (0<\(t\le\frac{1}{9}\)
Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\), \(t\in\left(0;\frac{1}{9}\right)\)1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
post từng câu một thôi bn nhìn mệt quá
Tìm x,y là các số nguyên dương thỏa: \(x^3-y^3=95\left(x^2+y^2\right)\)
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y
Đặt \(\left\{{}\begin{matrix}x-4=a\\y-3=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=5\)
\(Q=\sqrt{\left(a+5\right)^2+b^2}+\sqrt{\left(a+3\right)^2+\left(b+4\right)^2}\)
\(\Rightarrow Q\le\sqrt{2\left[\left(a+5\right)^2+b^2+\left(a+3\right)^2+\left(b+4\right)^2\right]}\) (Bunhiacopxki)
\(\Rightarrow Q\le\sqrt{4\left(a^2+8a+b^2+4b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2.4a+b^2+2.2b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2\left(a^2+4\right)+b^2+2\left(b^2+1\right)+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(3a^2+3b^2+35\right)}\le\sqrt{4\left(3.5+35\right)}=10\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)
Tìm x,y thuộc N thỏa
\(\left(y+3\right)^2=\left(x+1\right).x\)
Bình phương của 2 số nguyên tố cùng nhau là 1 số chính phương khi 1 trong 2 số đó bằng 0
Vậy x=0 ; hoặc x+1=0
.x=0=>y=-1
x=-1;y=-1