Những câu hỏi liên quan
H24
Xem chi tiết
NL
30 tháng 7 2021 lúc 12:03

\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)

\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)

\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm

\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm

Bình luận (0)
CD
Xem chi tiết
TG
Xem chi tiết
AN
31 tháng 3 2017 lúc 19:19

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

Bình luận (0)
HB
31 tháng 3 2017 lúc 22:15

Nếu xét các trường hợp khác thì sao alibaba ??

Bình luận (0)
AN
31 tháng 3 2017 lúc 23:16

Ta có

\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)

\(\ge2\left(a+b+c\right)-15=12-15=-3\)

Chẳng nói lên được gì hết

Bình luận (0)
BT
Xem chi tiết
H24
29 tháng 3 2020 lúc 16:26

1. D, 2. D, 3.C, 4.D, 5. D, 6.B

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TD
8 tháng 5 2019 lúc 10:26

\(P\left(1\right)=a+b+c=0\)

\(P\left(\frac{c}{a}\right)=a\cdot\frac{c^2}{a^2}+\frac{bc}{a}+c=\frac{c^2}{a}+\frac{bc}{a}+\frac{ac}{a}=\frac{c^2+bc+ac}{a}=\frac{c\cdot\left(c+b+a\right)}{a}=0\)

Vậy \(P\left(\frac{c}{a}\right)\)=0

Bình luận (0)
LT
Xem chi tiết
VN
Xem chi tiết
TD
Xem chi tiết
GH
Xem chi tiết