Tìm \(x,y\in N\)thỏa mãn \(x^2+y^2\cdot\left(x-y+1\right)-\left(x-1\right)\cdot y=22\)
Tìm x,y,z \(\inℚ\)thỏa mãn \(\left(x-\frac{1}{3}\right)\cdot\left(y-\frac{1}{2}\right)\cdot\left(z-5\right)=0\)và x+2=y+1=z+3
vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2 và z < x < y
ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH
TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4
TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3
TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2
nhớ cho mik nha
Ta có:
\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)
Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)
Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)
Với \(z-5=0\)\(\Rightarrow.....\)
B tự làm nốt nhé
Cho x, y, z là các số thực dương thỏa mãn x+y-z+1=0. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3\cdot y^3}{\left(x+yz\right)\cdot\left(y+xz\right)\cdot\left(z+xy\right)^2}\)
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
cho x,y,z thuộc R, thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) tính M=\(\frac{3}{4}+\left(x^2-y^2\right)\cdot\left(y^3+z^3\right)\cdot\left(z^4-x^4\right)\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).
Vậy \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x , y \(\in Z\)biết :
a) \(\left(x+1\right)\cdot\left(y-2\right)=0\)
b) \(\left(x+4\right)\cdot\left(y-2\right)=2\)
c) \(x\cdot y+5\cdot x+y=4\)
d) \(3\cdot x+4\cdot y-x\cdot y=15\)
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy x = - 1 ; y = 2
cho số thực x,y không ậm và thỏa mãn điều kiện:\(x^2+y^2\le2\).hãy tính giá trị lớn nhất của biểu thức:
\(P=\sqrt{x\cdot\left(29\cdot x+3\cdot y\right)}+\sqrt{y\cdot\left(29\cdot y+3\cdot x\right)}\)
chứng minh \(x^2\cdot\left(1+y^2\right)+y^2\cdot\left(1+z^2\right)+z^2\cdot\left(1+x^2\right)\ge6\cdot x\cdot y\cdot z\)
CM các đẳng thức sau:
\(\left[\frac{x+2}{x+1}-\frac{4\cdot\left(y+1\right)}{y+2}\right]:\left[\frac{x^2\cdot\left(y+1\right)}{y+1}-\frac{y^2\cdot\left(x+2\right)}{y+2}\right]=\frac{1}{y-x}\)