Cho x, y, z là các số thực dương thỏa mãn x+y-z+1=0. Tìm giá trị lớn nhất của biểu thức: P=\(\frac{x^3\cdot y^3}{\left(x+yz\right)\cdot\left(y+xz\right)\cdot\left(z+xy\right)^2}\)
cho x,y,z thuộc R, thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) tính M=\(\frac{3}{4}+\left(x^2-y^2\right)\cdot\left(y^3+z^3\right)\cdot\left(z^4-x^4\right)\)
cho số thực x,y không ậm và thỏa mãn điều kiện:\(x^2+y^2\le2\).hãy tính giá trị lớn nhất của biểu thức:
\(P=\sqrt{x\cdot\left(29\cdot x+3\cdot y\right)}+\sqrt{y\cdot\left(29\cdot y+3\cdot x\right)}\)
giải hệ phương trình :
a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)
b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)
Làm hộ mk nhé mk tick cho :))))))))))
cho x,y thỏa mãn :\(\left(\sqrt{x^2+3}+x\right)\cdot\left(\sqrt{y^2+3}+y\right)=3\)
tính A=\(x^{2013}+y^{2013}+1\)
1, Giải hệ phương trình:
\(\hept{\begin{cases}x\cdot\left|x\right|-\left(x+10\right)\cdot\left|x+10\right|=y\cdot\left|y\right|\\y\cdot\left|y\right|-\left(y+10\right)\cdot\left|y+10\right|=z\cdot\left|z\right|\\z\cdot\left|z\right|-\left(z+10\right)\cdot\left|z+10\right|=x\cdot\left|x\right|\end{cases}}\)
Giải hộ mk nhoa mk tick cho !!!!!!!!!
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
\(a=x\cdot y+\sqrt{\left(1+x^2\right)\cdot\left(1+y^2\right)}\) \(b=x\cdot\sqrt{1+y^2}+y\cdot\sqrt{1+x^2}\) với xy>0 tính b theo a
1 Cho x;y;z là các số thực dương thỏa mãn xy+yz+xz=2xyz. Tìm GTNN của\(P=\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}+3\cdot\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
2 Cho x;y;z là các số thực dương thỏa mãn: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=1\) CMR : \(x+y+z\ge2\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
3 Cho \(a;b;c>0\) thỏa mãn : \(a^2+b^2+c^2=1\) Tìm Min của \(P=\frac{a}{\left(1-a^4\right)^2}+\frac{b}{\left(1-b^4\right)^2}+\frac{c}{\left(1-c^4\right)^2}\)
Help me. thanks