Những câu hỏi liên quan
H24
Xem chi tiết
SG
28 tháng 11 2016 lúc 20:46

Đặt \(A=\frac{3}{2\left(3x+1\right)^4+3\left|1-y\right|^3+2}\)

Có: \(\begin{cases}2\left(3x+1\right)^4\ge0\\3\left|1-y\right|^3\ge0\end{cases}\)\(\forall x;y\)\(\Rightarrow2\left(3x+1\right)^4+3\left|1-y\right|^3+2\ge2\)\(\forall x;y\)

\(\Rightarrow A\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(\begin{cases}2\left(3x+1\right)^4=0\\3\left|1-y\right|^3=0\end{cases}\)\(\Rightarrow\begin{cases}\left(3x+1\right)^4=0\\\left|1-y\right|^3=0\end{cases}\)\(\Rightarrow\begin{cases}3x+1=0\\\left|1-y\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}3x=-1\\1-y=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{-1}{3}\\y=1\end{cases}\)

Vậy GTLN của A là \(\frac{3}{2}\) khi \(x=\frac{-1}{3};y=1\)

Bình luận (1)
PL
8 tháng 12 2016 lúc 20:44

\(\frac{3}{2}\)

Bình luận (0)
H24
Xem chi tiết
TQ
Xem chi tiết
AH
20 tháng 6 2023 lúc 11:40

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

Bình luận (0)
AH
20 tháng 6 2023 lúc 11:45

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

Bình luận (0)
AH
20 tháng 6 2023 lúc 11:47

$E=-|x^2-1|-(x-1)^2-y^2-2020$

Ta thấy:

$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$

Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$

$\Leftrightarrow x=1; y=0$

Bình luận (0)
DM
Xem chi tiết
TD
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Bình luận (0)
NV
Xem chi tiết
ND
8 tháng 11 2015 lúc 22:35

a) Vì (x+2)2 >/  0 

=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)

b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)

Bình luận (0)
PT
Xem chi tiết
NC
26 tháng 5 2020 lúc 0:10

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
LT
8 tháng 9 2019 lúc 12:48

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

Bình luận (0)
HL
17 tháng 4 2020 lúc 21:06

eeeee

Bình luận (0)
 Khách vãng lai đã xóa
ZN
17 tháng 4 2020 lúc 21:07

e cái gì là em bé à

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
30 tháng 11 2018 lúc 15:59

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

Bình luận (0)
PD
30 tháng 11 2018 lúc 16:15

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

Bình luận (0)
EG
Xem chi tiết
NT
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Bình luận (0)
 Khách vãng lai đã xóa