Những câu hỏi liên quan
ND
Xem chi tiết
PL
Xem chi tiết
DH
22 tháng 6 2021 lúc 15:19

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{a+b-\left(a-2b\right)}{c+d-\left(c-2d\right)}=\frac{3b}{3d}=\frac{b}{d}\)

\(\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\)

Suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\).

Bình luận (0)
 Khách vãng lai đã xóa
GS
Xem chi tiết
TD
20 tháng 5 2018 lúc 20:00

từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)ad = bc \(\Rightarrow\)ad + 2bc = bc + 2ad

\(\Rightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

\(\Rightarrow\)a ( b + d ) + 2c ( b + d ) = a ( b + 2d ) + c ( b + 2d )

\(\Rightarrow\)( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )

Bình luận (0)
BN
20 tháng 5 2018 lúc 20:01

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)\(=\frac{2c}{2d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

\(\Rightarrow\text{(a+2c)(b+d)=(a+c)(b+2d)  ( đpcm)}\)

Bình luận (0)
DT
31 tháng 10 2019 lúc 21:42

cảm ơn nha

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
NT
18 tháng 1 2022 lúc 21:31

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(a+2c\right)\left(b+d\right)=\left(bk+2dk\right)\left(b+d\right)=k\left(b+2d\right)\left(b+d\right)\)

\(\left(a+c\right)\left(b+2d\right)=\left(bk+dk\right)\left(b+2d\right)=k\left(b+d\right)\left(b+2d\right)\)

Do đó: VT=VP

Bình luận (0)
LV
Xem chi tiết
LV
12 tháng 3 2016 lúc 21:54

mk trả lời như thế này có đúng không các bạn góp ý nhé

vì a/b=c/d = \(\frac{a+c}{b+d}\left(1\right)\)

ta lại có:

a/b=c/d=\(\frac{a+2c}{2d}=\frac{a+2c}{b+2d}\left(2\right)\)

từ 1 và 2 ta có:

=>(a+2c).(b+d)=(a+c).(b+2d)

Bình luận (0)
NH
12 tháng 3 2016 lúc 21:57

đúng rồi đó bạn
k cho mình ?

Bình luận (0)
LV
12 tháng 3 2016 lúc 21:58

mk nói các bạn góp ý thôi mà 

Bình luận (0)
LV
Xem chi tiết
LH
13 tháng 4 2016 lúc 20:28

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Bình luận (0)
LH
13 tháng 4 2016 lúc 20:28

(a^2+b^2)/(c^2+d^2)=ab/cd 
<=>(a^2+b^2)cd=(c^2+d^2)ab 
<=>a^2cd+b^2cd=abc^2+abd^2 
<=>a^2cd+b^2cd-abc^2-abd^2=0 
<=>ad(ac-bd)-bc(ac-bd)=0 
<=>(ac-bd)(ad-bc)=0 
<=>ac=bd hoặc ad=bc 
=>a/b=c/d hoặc a/b=d/c

Bình luận (0)
LH
13 tháng 4 2016 lúc 20:28

Cho (a² + b²)/(c² + d²) = ab/cd. Chứng minh rằng a/b = c/d hoặc a/b = d/c 
Giải: Ta có (a² + b²)/(c² + d²) = ab/cd = 2ab/2cd = (a² + b² + 2ab)/(c² + d² + 2dc) = (a + b)²/(c + d)² = [ (a + b)/(c + d) ]² 
=> (a² + b²)/(c² + d²) = ab/cd = [ (a + b)/(c + d) ]² (1) 
Tương tự ta chứng minh được: 
(a² + b²)/(c² + d²) = ab/cd = [ (a - b)/(c - d) ]² (2) 
Từ (1) và (2) => [ (a + b)/(c + d) ]² = [ (a - b)/(c - d) ]² 
=> √[ (a + b)/(c + d) ]² = √[ (a - b)/(c - d) ]² 
=> I (a + b)/(c + d) I = I (a - b)/(c - d) I (trị tuyệt đối) 
=> (a + b)/(c + d) = (a - b)/(c - d) hoặc (a + b)/(c + d) = -(a - b)/(c - d) 

Trường hợp 1: (a + b)/(c + d) = (a - b)/(c - d) = (a + b + a - b)/(c + d + c - d) = 2a/2c = a/c 
=> (a + b)/(c + d) = (a - b)/(c - d) = a/c (3) 
tương tự: (a + b)/(c + d) = (a - b)/(c - d) = [a + b - (a - b) ]/[ c + d - (c - d) ] = (a + b - a + b)/(a + d - c + d) = 2c/2d = c/d 
=> (a + b)/(c + d) = (a - b)/(c - d) = c/d (4) 
Từ (3) và (4) => a/b = c/d (*) 

Trường hợp 2: (a + b)/(c + d) = -(a - b)/(c - d) 
<=> (a + b)/(c + d) = (-a + b)/(c - d) 
Chứng minh tương tự ta được a/b = d/c (*)(*) 
Từ (*) và (*)(*) => đpcm

Bình luận (0)
GR
Xem chi tiết
NH
Xem chi tiết
LT
20 tháng 2 2018 lúc 17:30

giải chổ nào vậy ko thấy

Bình luận (0)
NP
Xem chi tiết
AH
26 tháng 10 2024 lúc 10:45

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Ta có:

$(a+2c)(b+d)=(bk+2dk)(b+d)=k(b+2d)(b+d)(1)$

$(a+c)(b+2d)=(bk+dk)(b+2d)=k(b+d)(b+2d)(2)$

Từ $(1); (2)\Rightarrow (a+2c)(b+d)=(a+c)(b+2d)$

Bình luận (0)