Cho: a^2+b^2/c^2+d^2=ab/cd (voi a,b,c,d khác 0;c khac +d,-d)
Chứng ming rằng a/b=c/d hoặc a/b=d/c
Cho a/b=c/d a/b,c/d khác cộng trừ 1( a,b,c,d khác 0) CMR ab/cd a^2+b^2/c^2+d^2 (Giải bàng nhiều cách)
Đặt a/b=c/d=k
=>a=bk;c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
cho a^2+d^2/c^2+d^2=ab/cd với a,b,c,d khác 0, c khác âm, dương d
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0 ; c khác +d và -d . chứng minh rằng hoặc a/b = c/d hoặc a/b = d/c
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)
Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
kinh quá
cho a2+b2/ c2 + d2 = ab/cd với a,b c, khác 0; c khác + - d chưngs minh rằng hoặc a/b = c/d hoặc a/b = - d/c
Cho tỉ lệ thức : a/b = c/d ( a , b , c , d khác 0 )
Chứng minh rằng : a^2 + b^2 / c^2 + d^2 = ab / cd
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(Đpcm)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
cho a^2+b^2/c^2+d^2=ab/cd với a,\b,c,d khác 0 và c không bằng +-d chứng minh a/b=d/c
mọi người ơi giúp mình với
cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) voi a; b; c khac 0 va c khac cong tru d . CMR \(\frac{a}{b}=\frac{c}{d}\)
co ai biet ko? Neu biet thi giup mk voi
1)Cho a/b=c/d. CM:a^2-b^2/ab=c^2-d^2/cd
2)Cho a,b,c đôi một khác và khác 0 biết ab có gạch trên đầu ý nguyên tố ab gạch trên đầu / cd gach trên đầu
3)Tìm x,y thuộc Z khác 0 thỏa 9^2 nhân x^2=16(y^2+9)
4)TÌm GTLN của A=x+2/ |x| với x thuộc Z
5)Tìm a,b,c biết ab=2,bc=6,ac=3