Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 4 2019 lúc 11:12

Bình luận (0)
TD
Xem chi tiết
NT
18 tháng 12 2022 lúc 15:13

\(\overrightarrow{AB}=\left(1;2\right)\)

\(\overrightarrow{AC}=\left(x;y+5\right)\)

Để A,B,C thẳng hàng thì x/1=y+5/2

=>2x=y+5

=>y=2x-5

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 12 2017 lúc 6:49

Bình luận (0)
AH
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 6 2019 lúc 7:37

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 9 2018 lúc 15:26

Đáp án C

a x 2 − 7 x + 12 − b x 2 − 4 x + 3 = a x − 3 x − 4 − b x − 1 x − 3 = a x − 1 − b x − 4 x − 1 x − 3 x − 4

lim x → 3 − x − 1 x − 3 x − 4 = 0

lim x → 3 − a x 2 − 7 x + 12 − b x 2 − 4 x + 3

hữu hạn thì  2 a + b = 0   . Vậy C đúng

 

Bình luận (0)
H24
Xem chi tiết
NM
31 tháng 10 2021 lúc 18:12

Câu 9:

\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=1\)

\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)

Dấu \("="\Leftrightarrow a=b=c=1\)

Câu 10:

\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b\)

\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

Câu 13:

\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)

Bình luận (0)
AH
31 tháng 10 2021 lúc 20:30

Câu 6:

$2=(a+b)(a^2-ab+b^2)>0$

$\Rightarrow a+b>0$

$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$

$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$

$\Rightarrow N\leq 2$

Vậy $N_{\max}=2$

Bình luận (0)
AH
31 tháng 10 2021 lúc 20:32

Câu 7:

BĐT $\Leftrightarrow a^3+b^3\geq ab(a+b)$

$\Leftrightarrow a^3+b^3-ab(a+b)\geq 0$

$\Leftrightarrow (a-b)^2(a+b)\geq 0$ (luôn đúng với mọi $a,b,c>0$)

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b>0$, $c$ dương bất kỳ. 

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 5 2019 lúc 15:13

 

 

Bình luận (0)
DM
Xem chi tiết