Cho tỉ lệ thức \(\frac{a+b}{c+b}=\frac{a}{c}\)
Với \(a,c\ne0;c+b\ne0;b\ne0\)Vậy\(\frac{c}{a}=\)Giúp mk với
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\)chứng tỏ ằng nếu \(a\ne+-b,c\ne+-d\)thì ta có các tỉ lệ thức :\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức \(\frac{\overline{ab}}{bc}=\frac{b}{c}\)với \(c\ne0\)CMR tỉ lệ thức \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Cho tỉ lệ thức \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\).Chứng minh tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)với giả thuyết \(c\ne0\)
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)
\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)
\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)
\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)
p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\).
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}.\)
A/B=C/D <=>A/C=B/D
THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ
A/C=B/D=A+B/C+D=A-B/C-D
=>A+B/C+D=A-B/C-D
=>A+B/A-B=C+D/C-D =>ĐPCM
bạn tham khảo :
Câu hỏi của Kudo Shinichi - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a-b\ne0,c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng tính chất tỉ lệ thức ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\left(a+b\right).\left(c-d\right)=\left(a-b\right).\left(c+d\right)\)
Chia hai vế cho \(\left(a-b\right).\left(c-d\right)\)
\(\Rightarrow\frac{\left(a+b\right).\left(c-d\right)}{\left(a-b\right).\left(c-d\right)}=\frac{\left(a-b\right).\left(c+d\right)}{\left(a-b\right).\left(c-d\right)}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow ac-ad+ba-bd=ab-bc+ad-db\) (luôn đúng)
Cho tỉ lệ thức \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\). Chứng minh tỉ lệ thức \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Giải:
Từ \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\Rightarrow\frac{ab}{b}=\frac{bc}{c}\left(a,b,c>0\right)\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)hay \(ac=b^2\). Ta có: \(\left(a^2+b^2\right)c=\left(a^2+ac\right)=a^2c+ac^2\)
Tương tự có: \(\left(b^2+c^2\right)a=a^2c+ac^2\)
\(\Rightarrow\left(a^2+b^2\right)c=\left(b^2+c^2\right)a\)hay \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
1) Áp dụng tính chất của dãy tỉ số = nhau ta có:
ab/bc=b/c=ab−b/bc−c=(10a+b)−b/(10b+c)−c=10a/10b=a/b
⇒a^2/b^2=b^2/c^2=ab/bc=a/c(1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
a^2/b^2=2=b^2/c^2=a^2+b^2/b^2+c^2(2)
Từ (1) và (2) ⇒a^2+b^2/b^2+c^2=a/c(đpcm)