Chứng minh rằng nếu : \(\dfrac{a+2002}{a-2002}=\dfrac{b+2001}{b-2001}\) và \(b\ne0;b\ne\pm2001\) thì \(\dfrac{a}{2002}=\dfrac{b}{2001}\)
Chứng minh rằng nếu (a+2002):(a-2002)=(b+2001):(b-2001) với a#0;b#0;b3+-2001 thì a:2002=b:2001
So sánh hai biểu thức A và B biết rằng :
\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\) \(B=\dfrac{2000+2001}{2001+2002}\)
So sánh hai biểu thức A và B biết rằng:
[Math Processing Error]A=20002001+20012002
[Math Processing Error]B=2000+20012001+2002
Hướng dẫn làm bài:
Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
Cộng vế với vế ta được:
[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002
Vậy A > B
So sánh hai biểu thức A và B biết rằng :
\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) ; \(B = \dfrac{2000 + 2001}{2001 + 2002}\)
\(B = \dfrac{2000 + 2001}{2001 + 2002} = \dfrac{4001}{4003} \) (1)
\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) > \(\dfrac{2000}{2002} + \dfrac{2001}{2002} > \dfrac{4001}{2002}\) (2)
Từ (1) và (2) \(\Rightarrow\) A > B
so sánh A và B mà không cần tính:
A=\(\dfrac{2000}{2001}\)+\(\dfrac{2001}{2002}\)
B=\(\dfrac{200+2001}{2001+2002}\)
Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
Vậy A > B
mình viết nhầm nhé
B=\(\dfrac{2000+2001}{2001+2002}\)
\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
a, cho 3 số dương a,b,c có tổng =1. chứng minh rằng: 1/a+1/b+1/c lớn hơn hoặc =9
b, cho a,b dương với a^2000+b^2000=a^2001+ b^2001=a^2002+b^2002
tính a^2001+b^2001
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
So sánh 2 biểu thức A và B biết rằng:
A= 2000/2001 + 2001/2002
B= 2000 + 2001/ 2001+2002
Ta có:
\(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)(1)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)(2)
Cộng các bất đẳng thức (1) và ( 2) vế với nhau:
Vậy \(\frac{2000}{2001}\)+ \(\frac{2001}{2002}\)> \(\frac{2000+2001}{2001+2002}\)hay A > B.
So sánh 2 biểu thức A và B biết rằng :
A= 2000/2001+2001/2002
B=2000+2001/2001+2002
B=2000/2001+2002 + 2001/2001+2002
Ta có:
2000/2001 > 2000/2001+2002
2001/2002 > 2001/2001+2002
Vậy A >B
\(B=\frac{2000}{2001}+2002+\frac{2001}{2001}+2002\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
Bạn Hoàng và sakura thủ..... bài y như copy xong rồi cải tiến ýkkkkkkkkkkkkk
Bài 1. Thực hiện phép tính
\(\dfrac{1}{2002}\) + \(\dfrac{2003*2001}{2002}\)+ 2003
Bài 2.Tìm 2 số hữu tỉ a, b biết a+b= a.b = a:b
Bài 3.
Chứng minh rằng: a, \(\dfrac{1}{a(a+1)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
b, \(\dfrac{2}{a(a+1)(a+2)}=\dfrac{1}{a(a+1)}-\dfrac{1}{(a+1)(a+2)}\)
bài 1\(\dfrac{1}{2002}+\dfrac{2003\cdot2001}{2002}+2003=\dfrac{1+2003\cdot2001+2003\cdot2002}{2002}=\dfrac{1+2003\left(2001+2003\right)}{2002}=1+2003\cdot2=4007\)
câu3
a)VP=\(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1-a}{a\left(a+1\right)}=\dfrac{1}{a\left(a+1\right)}\)=VT
b)VP=VT\(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}=\dfrac{a+2}{a\left(a+1\right)\left(a+2\right)}-\dfrac{a}{a\left(a+1\right)\left(a+2\right)}=\dfrac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\dfrac{2}{a\left(a+1\right)\left(a+2\right)}\)
ta có
a+b=ab=>a=ab-b=b(a-1)
Thay a=b(a-1)vào a+b=a/b ta có
\(a+b=\dfrac{b\left(a-1\right)}{b}\Rightarrow b=-1\)thay b=-1 vao a+b=ab ta đc
a-1=-a=>a=1/2
Cho A=2002/2001+2001/2002; B= 2000/2001+2001/2002 .So sánh A và B
Giải
Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)
Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)
Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1
Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1
Vì 2000<2001 nên \(\frac{2000}{2001}\)<1
\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)
\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)
Vậy A>B
So sánh A và B, biết: A= 2000/2001 + 2001/ 2002 và B= 2000 + 2001/ 2001 + 2002
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B