Những câu hỏi liên quan
NN
Xem chi tiết
SK
Xem chi tiết
ND
17 tháng 4 2017 lúc 21:40

Giải bài 174 trang 67 SGK Toán 6 Tập 2 | Giải toán lớp 6

Bình luận (0)
TB
17 tháng 4 2017 lúc 22:46

So sánh hai biểu thức A và B biết rằng:

[Math Processing Error]A=20002001+20012002

[Math Processing Error]B=2000+20012001+2002

Hướng dẫn làm bài:

Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

Cộng vế với vế ta được:

[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002

Vậy A > B

Bình luận (0)
NA
8 tháng 5 2017 lúc 17:45

So sánh hai biểu thức A và B biết rằng :

\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) ; \(B = \dfrac{2000 + 2001}{2001 + 2002}\)

\(B = \dfrac{2000 + 2001}{2001 + 2002} = \dfrac{4001}{4003} \) (1)

\(A = \dfrac{2000}{2001} + \dfrac{2001}{2002}\) > \(\dfrac{2000}{2002} + \dfrac{2001}{2002} > \dfrac{4001}{2002}\) (2)

Từ (1) và (2) \(\Rightarrow\) A > B

Bình luận (0)
NH
Xem chi tiết
JP
12 tháng 5 2017 lúc 19:34

Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)

\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)

\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

Vậy A > B

Bình luận (0)
NH
30 tháng 3 2017 lúc 19:51

mình viết nhầm nhé

B=\(\dfrac{2000+2001}{2001+2002}\)

Bình luận (0)
NL
30 tháng 3 2017 lúc 20:16

\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

Bình luận (3)
LM
Xem chi tiết
NH
18 tháng 2 2016 lúc 22:18

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

Bình luận (0)
H24
Xem chi tiết
NV
4 tháng 5 2016 lúc 20:31

Ta có:

\(\frac{2000}{2001}\)\(\frac{2000}{2001+2002}\)(1)

\(\frac{2001}{2002}\)\(\frac{2001}{2001+2002}\)(2)

Cộng các bất đẳng thức (1) và ( 2) vế với nhau:

Vậy \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)\(\frac{2000+2001}{2001+2002}\)hay A > B.

Bình luận (0)
NL
Xem chi tiết
KF
30 tháng 4 2015 lúc 12:10

B=2000/2001+2002 + 2001/2001+2002

Ta có:

2000/2001 > 2000/2001+2002

2001/2002 > 2001/2001+2002

Vậy A >B

Bình luận (0)
CP
30 tháng 4 2015 lúc 12:18

\(B=\frac{2000}{2001}+2002+\frac{2001}{2001}+2002\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B

Bình luận (0)
LH
30 tháng 4 2015 lúc 12:20

Bạn Hoàng và sakura thủ..... bài y như copy xong rồi cải tiến ýkkkkkkkkkkkkk

Bình luận (0)
NN
Xem chi tiết
CC
15 tháng 9 2017 lúc 21:32

bài 1\(\dfrac{1}{2002}+\dfrac{2003\cdot2001}{2002}+2003=\dfrac{1+2003\cdot2001+2003\cdot2002}{2002}=\dfrac{1+2003\left(2001+2003\right)}{2002}=1+2003\cdot2=4007\)

Bình luận (0)
CC
15 tháng 9 2017 lúc 21:41

câu3

a)VP=\(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1-a}{a\left(a+1\right)}=\dfrac{1}{a\left(a+1\right)}\)=VT

b)VP=VT\(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}=\dfrac{a+2}{a\left(a+1\right)\left(a+2\right)}-\dfrac{a}{a\left(a+1\right)\left(a+2\right)}=\dfrac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\dfrac{2}{a\left(a+1\right)\left(a+2\right)}\)

Bình luận (0)
CC
15 tháng 9 2017 lúc 21:53

ta có

a+b=ab=>a=ab-b=b(a-1)

Thay a=b(a-1)vào a+b=a/b ta có

\(a+b=\dfrac{b\left(a-1\right)}{b}\Rightarrow b=-1\)thay b=-1 vao a+b=ab ta đc

a-1=-a=>a=1/2

Bình luận (0)
DC
Xem chi tiết
NQ
31 tháng 3 2015 lúc 21:16

                                         Giải

Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)

Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)

Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1

Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1

Vì 2000<2001 nên \(\frac{2000}{2001}\)<1

\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)

\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)

Vậy A>B

Bình luận (0)
JC
Xem chi tiết
DT
27 tháng 4 2016 lúc 19:34

ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)

\(\Rightarrow A

Bình luận (0)
TN
27 tháng 4 2016 lúc 19:35

ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

\(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)

\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)

=>A>B

Bình luận (0)