Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LM
Xem chi tiết
XO
6 tháng 12 2020 lúc 11:24

a) Ta có ƯCLN(a;b).BCNN(a;b) = a.b

=> a.b = 6.36 = 216

Vì ƯCLN(a;b) = 6

=> a = 6m ; b = 6n (ƯCLN(m;n) = 1)

Khi đó a.b = 216

<=> 6m.6n = 216

=> m.n = 6

Ta có 6 = 1.6 = 2.3 

Lập bảng xét các trường hợp 

m1623
n6132
a6361218
b3661812

Vậy các cặp số (a;b) thỏa mãn là : (36;6) ; (6;36) ; (12;18) ; (18;12)

b) Ta có ƯCLN(a;b) . BCNN(a;b) = a.b

=> ƯCLN(a;b) . 150 = 3750

=> ƯCLN(a;b) = 25 

Đặt a = 25m ; b = 25n  (ƯCLN(m;n) = 1)

Khi đó a.b = 3750

<=> 25m.25n = 3750

=> m.n = 6

Ta có 6 = 1.6 = 2.3

Lập bảng xét các trường hợp 

m1623
n6132
a251505075
b150257550

Vậy các cặp số (a;b) thỏa mãn là : (25;150) ; (150;25) ; (50;75) ; (75;50)

c) Ta có ƯCLN(a;b) . BCNN(a;b) = 180

=> ƯCLN(a;b) . 20.ƯCLN(a;b) = 180

=> [ƯCLN(a;b)]2 = 9

=> ƯCLN(a;b) = 3

Đặt a = 3m ; b = 3n (ƯCLN(a;b) = 1)

Khi đó a.b = 180

<=> 3m.3n = 180

=> m.n = 20 

Ta có 20 = 1.20 = 4.5

Lập bảng xét các trường hợp 

m12045
n20154
a3601215
b6031512

Vậy các cặp số (a;b) thỏa mãn là : (3;60) ; (60;3) ; (12;15) ; (15;12)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NM
Xem chi tiết
DT
15 tháng 10 2015 lúc 10:46

Vào đây và nhớ tích nhá : 

Tìm các số tự nhiên a và b biết :a x b =360 và BCNN(a,b)=60

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

 

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 11 2017 lúc 10:30

nhanh lơn nào 

Bình luận (0)
BT
Xem chi tiết
KY
20 tháng 12 2020 lúc 11:39
Các bạn gửi tin nhắn kiểu gì vậy mik ko gửi được
Bình luận (0)
 Khách vãng lai đã xóa
BT
20 tháng 12 2020 lúc 11:49

kiều văn yên tưởng bạn trả lời mk

Bình luận (0)
 Khách vãng lai đã xóa
BT
20 tháng 12 2020 lúc 11:50

mà mk cũng ko bít gửi tin nhắn

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
LP
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Bình luận (0)
HL
15 tháng 10 2023 lúc 21:03

 Ko bt

Bình luận (0)
TM
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Bình luận (0)
LN
Xem chi tiết
NT
19 tháng 12 2021 lúc 20:47

a: a=36

b=6

Bình luận (0)
KH
19 tháng 12 2021 lúc 20:59

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

Bình luận (2)
NC
30 tháng 12 2023 lúc 10:48

a: a=36

b=6

Bình luận (0)
NK
Xem chi tiết
LB
Xem chi tiết