Những câu hỏi liên quan
LH
Xem chi tiết
KL
26 tháng 7 2017 lúc 14:40

Gọi d = ƯCLN(2n +1; 7n + 2)
Theo bài ra ta có :
\(\left\{{}\begin{matrix}2n+1⋮d\\7n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}7\left(2n+1\right)⋮d\\2\left(7n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}14n+7⋮d\\14n+4⋮d\end{matrix}\right.\)
=> (14n +7) - (14n + 4) chia hết cho d
=> 3 chia hết cho d
=> d thuộc Ư(3)
Để (2n +1; 7n + 2) = 1 <=> d = 1
Nếu d = 3 => 2n + 1 = 3k (k thuộc N) => 2n = 3k - 1
=> n = \(\dfrac{3k-1}{2}\)
Vậy để (2n + 1; 7n + 2) = 1 thì n \(\ne\) \(\dfrac{3k-1}{2}\) (k thuộc N)
@lê văn hợp

Bình luận (0)
PL
Xem chi tiết
H24
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

Bình luận (0)
H24
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Bình luận (0)
PL
21 tháng 11 2018 lúc 20:41

Thank you nha!

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
27 tháng 12 2021 lúc 14:48

Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau

=> ƯCLN(2n+1;7n+6) = 1

Vậy ƯCLN của 2n+1 và 7n+6 là 1

_HT_

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
DH
8 tháng 7 2018 lúc 20:36

Để 2n+1 và 7n+2 là hai số nguyên tố cùng nhau

<=> ƯCLN(2n+1;7n+2) = 1

<=> 7.(2n+1)-2.(7n+2) chia hết cho 1

<=> 14n+7-14n-4 chia hết cho 1

<=> 3 chia hết cho 1

Vậy n = 3 (thỏa mãn \(n\in N\) )

Bình luận (0)
CN
8 tháng 7 2018 lúc 20:40

mik thấy câu rả lời này nhiều lắm,chắc các bn copy của nhau chớ gì.mik cần câu trả lời tự làm của các bn nhưng phải chi tiết ,rõ ràng và chính xác

Bình luận (0)
KB
8 tháng 7 2018 lúc 21:10

Gọi \(\left(2n+1;7n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\7n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}14n+7⋮d\\14n+4⋮d\end{cases}\Rightarrow}\left(14n+7\right)-\left(14n+4\right)⋮d}\)

\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)

\(d=3\Rightarrow2n+1⋮3\Rightarrow4n+2⋮3\Rightarrow3n+n+2⋮3\)

\(\Rightarrow n+2⋮3\Rightarrow n=3k-2\left(k\inℕ^∗\right)\)

=> d=3  thì rút gọn được

\(\Rightarrow n#3k-2\Rightarrow\)tối giản

Bình luận (0)
HT
Xem chi tiết