Cho tam giác ABC có 3 híc nhọn nội tiếp (O;R) (AB < AC) ba đường cao AD,BE,CF cắt nhau tại H.Đường thẳng EF cắt BC tại K 1.Cm AEHF là tứ giác nội tiếp 2.Cm DB.DC = DH.DA
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
Cho tam giác ABC nhọn nội tiếp (O) có góc BAC =60, H là trực tâm. Goi I là tâm đường tròn nội tiếp tam giác ABC. Chung minh IO =IH
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) đường cao BH và CK lần lượt cắt (O) tại E và F a)tứ giác BKHC nội tiếp b) OA vuông góc với EF c) EF song song HK d) Khi tam giác ABC là tam giác đều có cạnh bằng a tính diện tích hình viên phân chắn cung nhỏ BC của (O)
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) đường cao BH và CK lần lượt cắt (O) tại E và F a)tứ giác BKHC nội tiếp b) OA vuông góc với EF c) EF song song HK d) Khi tam giác ABC là tam giác đều có cạnh bằng a tính diện tích hình viên phân chắn cung nhỏ BC của (O)
Cho tam giác nhọn ABC có các đường cao kẻ từ B, C cắt nhau tại O. CMR: Nếu đường tròn nội tiếp tam giác OAB và đường tròn nội tiếp tam giác OAC có bán kính bằng nhau thì tam giác ABC là tam giác cân.
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Gọi I là giao điểm của đường cao BH và CK của tam giác ABC. Chứng minh rằng:
a) Tứ giác AHIK nội tiếp
b) góc CAI = góc BCH