Những câu hỏi liên quan
MT
Xem chi tiết
HA
18 tháng 6 2017 lúc 9:24

Tự vẽ hình.

a) Xét \(\Delta OAH;\Delta OBH\) vuông tại A; B có:

OH chung

\(\widehat{AOH}=\widehat{BOH}\) (tia phân giác)

\(\Rightarrow\Delta OAH=\Delta OBH\left(ch-gn\right)\)

\(\Rightarrow AH=BH\)

\(\Rightarrow\Delta HAB\) cân tại H.

b) Gọi giao điểm của BC và OA là E.

Xét \(\Delta OAC;\Delta OBC:\)

\(OA=OB\) (suy ra từ câu a)

\(\widehat{AOC}=\widehat{BOC}\) (tia pg)

OC chung

\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAC}=\widehat{OBC}\) hay \(\widehat{OAD}=\widehat{OBE}\)

Xét \(\Delta OAD;\Delta OBE\):

\(\widehat{O}\) chung

\(OA=OB\)

\(\widehat{OAD}=\widehat{OBE}\) (c/m trên)

\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)

\(\Rightarrow\widehat{ODA}=\widehat{OEB}=90^o\)

\(\Rightarrow BC\perp Ox\)

Bình luận (0)
H24
Xem chi tiết
MT
Xem chi tiết
TH
18 tháng 6 2017 lúc 12:37

Ta có hình vẽ:

x O y z H A B D C

a/ Xét hai tam giác vuông OAH và OBH có:

góc AOH = góc BOH (Gt)

OH: cạnh chung

=> tam giác OAH = tam giác OBH

=> OA = OB (hai cạnh tương ứng)

Vậy tam giác OAB cân tại O

b/ Ta có: OA = OB (cmt)

Ta lại có: AH = BH (t/g OAH = t/g BOH)

=> OH là trung trực của AB

=> OH vuông góc vs AB

hay OH là đường cao của tam giác OAB

Ta có: AD vuông góc với OB

hay AD là đường cao của tam giác OAB

Mà AD cắt OH tại C

=> C là trực tâm của tam giác

=> BC vuông góc vs OA

hay BC vuông góc vs Ox

Bình luận (0)
DD
Xem chi tiết
LL
Xem chi tiết
KT
4 tháng 6 2016 lúc 19:49

H O A B x y 60

OD ở đâu vậy bạn??

Bình luận (0)
LL
10 tháng 6 2016 lúc 16:36

a. chung minh tam giac HAB can

b. Goi D la hinh chieu cua A tren Oy,C la giao diem cua AD voi OH.chung minh BC vuong goc Ox

c. khi goc xOy = 60 do , chug minh OA = 2OD

Bình luận (0)
KT
11 tháng 6 2016 lúc 22:58

O A B D C K 2 1 H x y

a) Xét \(\Delta\)AOH và \(\Delta\)BOH:

OAH^= OBH^= 90o

OH chung

AOH^ = BOH^

=> \(\Delta\)AOH = \(\Delta\)BOH (cạnh huyền_góc nhọn)

=> HA = HB (2 cạnh tương ứng)

=> \(\Delta\)HAB cân

b) Gọi giao điểm của OH và AB là  K

Xét \(\Delta\)OKB và \(\Delta\)OKA:

OB = OA (do \(\Delta\)AOH = \(\Delta\)BOH )

BOH^ = AOH^

OH chung

=>  \(\Delta\)OKB = \(\Delta\)OKA (c.g.c)

=> K1^ = K2^ (2 góc tương ứng)

mà K1^ + K2^ = 180o (kề bù)

=> K1^ = K2^ = 90o

=> OK _|_ AB => OK là đường cao của \(\Delta\)BOA tại O)

Ta có: 

C là giao điểm của 2 đường cao OK và AD => BC _|_ OA hay BC _|_ Ox

c) Ta có: AOH^ = BOH^ = AOB^/2= 60o/2= 30o

và AOH^ + AOB^ = 90o (phụ nhau)

=> OAB^ = 90o - AOH^ = 90o - 30o = 60o

    BOH^ + OBA^ = 90o

=> OBA^ = 90o - BOH^ = 90o -30o = 60o

=> \(\Delta\)BOA đều

=> AD là đường trung trực của \(\Delta\)BOA.

=> 2* OD= OB

mà OB = OA

=> 2* OD= OA

Bình luận (0)
MS
Xem chi tiết
MS
24 tháng 3 2017 lúc 17:53

Giúp mih vs, cần gấp khocroi

Bình luận (0)
H24
24 tháng 3 2017 lúc 23:22

a) \(\Delta AOH=\Delta BOH\)(ch-cgv)

b) C là trực tâm tam giác OAB

c) tam giác vuông AOD có góc OAD =30 => OD=1/2 OA

Bình luận (0)
NT
Xem chi tiết
TA
Xem chi tiết
NN
Xem chi tiết
HA
20 tháng 12 2016 lúc 23:10

x y A B M N H I

a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:

OA = OB (GT)

góc O chung

=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)

=> OM = ON ( 2 cạnh tương ứng ) → đpcm

Ta có OA + AN = ON

OB + BM = OM

mà OM = ON ( cm trên ); OA = OB

=> AN = BM → đpcm

b) Xét ΔNOH và ΔMOH có;

ON = OM (cm trên)

OH chung

NH = MH (suy từ gt)

=> ΔNOH = ΔMOH (c.c.c)

=> góc NOH = MOH ( 2 góc tương ứng )

Do đó OH là tia pg của góc xOy → đpcm (1)

c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.

Xét ΔNAI và ΔMBI có:

góc ANI = BMI (cm trên)

AN = BM ( câu a)

góc NAI = MBI (= 90 )

=> ΔNAI = ΔMBI ( g.c.g )

=> AI = BI (2 cạnh tương ứng)

Xét ΔAOI và ΔBOI có :

AI = BI (cm trên)

góc OAI = OBI (=90)

OI chung

=> ΔAOI = ΔBOI ( c.g.c )

=> góc AOI = BOI ( 2 góc tương ứng )

Do đó OI là tia pg của xOy (2)

Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.

Chúc học tốt nguyen thi minh nguyet hihi

Bình luận (0)
SG
20 tháng 12 2016 lúc 22:29

a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:

OA = OB (gt)

O là góc chung

Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)

=> AMO = BNO (2 góc tương ứng)

OM = ON (2 cạnh tương ứng) (1)

Lại có: OB = OA (gt)

=> OM - OB = ON - OA

=> BM = AN (2)

(1) và (2) là đpcm

b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:

AN = BM (câu a)

ANH = BMH (câu a)

Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)

=> HN = HM (2 cạnh tương ứng)

Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)

=> NOH = MOH (2 góc tương ứng)

=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)

c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)

=> NOI = MOI (2 góc tương ứng)

=> OI là phân giác NOM

Mà OH cũng là phân giác NOM

Nên O,H,I thẳng hàng (đpcm)

 

Bình luận (0)