Những câu hỏi liên quan
NT
Xem chi tiết
NA
Xem chi tiết
HA
Xem chi tiết
NH
3 tháng 12 2015 lúc 20:22


c)Xét tam giác OED và ODC có:
góc OED=ODC(=90)(1)
góc EOB=DOC(đối đỉnh)(3). do đó góc EBO = DCO( theo định kí tổng 3 góc của tam giác)(2)
Từ 1,2,3 => tam giác OEB=ODC(định lí 2 tam giác bằng nhau)=> OB=OC(*)
Xét tam giác OAB và OAC có
AB=AC
OA chung
OB=OC(theo *)
Do đó tam giác OAB=OAC=> góc OAB = OAC=> OA là phân giác của góc BAC

Bình luận (0)
TD
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
H24
17 tháng 2 2020 lúc 18:24

Hình minh họa:

Bài Làm:

a) Xét ΔBCE vuông tại E và ΔCBD vuông tại D có:

BC: chung

EBCˆ=DCBˆ(gt)EBC^=DCB^(gt)

=> ΔBCE=ΔCBD(ch−gn)ΔBCE=ΔCBD(ch−gn)

=> CE = BD (đpcm)

b) tg BCE = tg CBD

=> BE = CD (1)

và DBCˆ=ECBˆDBC^=ECB^

Ta có: DBCˆ+B1ˆ=EBCˆDBC^+B1^=EBC^ECBˆ+C1ˆ=DCBˆECB^+C1^=DCB^

mà {DBCˆ=ECBˆ(cmt)EBCˆ=DCBˆ(gt) => B1ˆ=C1ˆB1^=C1^ (2)

Từ (1), (2) => ΔOEB=ΔODC(cgv-gnk) (đpcm)

c) Xét ΔABOΔABO và ΔACOΔACO có:

AB = AC (gt)

AO: chung

BO = CO (tg OEB = tg ODC)

=> ΔABO=ΔACO(c−c−c)

=> BAOˆ=CAOˆ mà O nằm trong tam giác ABC

=> AO là tia p/g của góc BAC (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NH
17 tháng 2 2020 lúc 18:48

A B C D E

a )  Xét tam giác ABD và tam giác ACE có :

A là góc chung

AB = AC ( gt)

góc D = góc E = 90 độ ( gt )

Vậy tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b )  Ta có : góc D = góc E = 90 độ ( gt ) (1)

Ta có : AB = AC ( gt )

AE = AD ( do tam giác ABD = tam giác ACE )

=> BE = CD (2)

Ta có : góc EBO = góc DCO ( do tam giác ABD = tam giác ACE ) (3)

Từ (1) , (2) , (3) => Tam giác OEB = Tam giác ODC

c )  Xét tam giác ABO và tam giác ACO có :

AB = AC ( gt )

AO chung

BO = CO ( Tam giác OEB = Tam giác ODC )

=> Tam giác ABO = tam giác ACO ( c.c.c )

=> Góc BAO = góc CAO ( 2 góc tương ứng )

=> AO là tia phân giác của góc BAC ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
AT
Xem chi tiết
AM
7 tháng 2 2022 lúc 18:03

Bạn vẽ hình giúp mình nha

Xét \(\Delta ABC\) có AB=AC \(\Rightarrow\)\(\Delta ABC\) cân tại A

Xét \(\Delta BEC\) vuông tại E và \(\Delta CDB\) vuông tại D có:

\(\left\{{}\begin{matrix}\widehat{EBC}=\widehat{DCB}\left(\Delta ABC.cân.tại.A\right)\\BC.là.cạnh.chung\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta BEC\)=\(\Delta CDB\)\(\Rightarrow\)BD=CE(đpcm)

Bình luận (0)
H24
Xem chi tiết