Bài 3. Cho tam giác ABC AB=AC và M là trung điểm của AC & N là trung điểm của AB .BM&CN cắt nhau tại K. Chứng minh: a) ΔBNC = ΔCMB b) ΔBKC có KB=KC
Bài 9 (1 điểm) Cho tam giác ABC có M là điểm thuộc cạnh BC sao cho BC = 3 x MC và N là điểm thuộc cạnh AC sao cho AC = 4 x AN. Kéo dài MN cắt AB kéo dài tại P. Tính tỉ số diện tích tam giác PAN và tam giác ABC.
Bài 10 (1 điểm) Cho tam giác ABC có M là trung điểm AB. N là điểm thuộc cạnh AC sao cho AC = 3 x NC. Gọi P là trung điểm AN, Q là trung điểm MN. Tính diện tích tam giác PQN biết diện tích tam giác ABC là 180cm2.
1 điểm
giúp mik nhé, mik đang cần gấp
bài 1: Cho tam giác ABC cân có Â=36 độ. Trung trực AB cắt AC tại D. Chứng minh BD là phân giác tam giác ABC
bài 2: Cho tam giác ABC, Â=90 dộ,AB<AC. Đường trung trực của cạnh AB cắt AC ở M. Biết BM là phân giác góc ABC. Tính góc ACB
bài 3: Cho tam giác ABC cân A. Trung tuyến AM. Gọi I là điểm nằm giữa A và m. Chứng minh rằng tam giác AIB=tam giác AIC; tam giác IBM= tam giác ICM
Bài 1: cho tam giác ABC gọi K,D lần lượt là trung điểm của AB,BC : trên tia đối của tia DA lấy M sao cho DM=DA, trên tia đối của KM lấy N sao cho KM= KN. Chứng minh A là trung điểm của NC
Bài 2: Cho tam giác ABC (AB<AC) từ trung điểm M của BC kẻ đường vuông góc với tia phân giác của góc A cắt AB, AC và tia phân giác của góc A tại D,E,H. Chứng minh rằng BD=CE
Bài 3: Cho tam giác ABC vẽ BH vuông góc với AC (H thuộc AC) gọi M là trung điểm của AC biết góc ABH= góc HBM= góc MBC. Tính các góc cn lại của tam giác ABC
GIÚP MK VỚI MK ĐANG GẤP
Bài 3. (3 điểm) Cho tam giác ABC cân, biết AB = 10cm, BC = 5cm có độ dài 3 cạnh của
tam giác là 3 số nguyên dương.
a) Tính độ dài cạnh AC và chứng minh rằng tam giác ABC cân tại A.
b) Gọi M, N lần lượt là trung điểm của AB và AC. Chứng minh ABN ACM
c) Chứng minh AB+BC>BN+CM
a: AB+BC>AC>AB-BC
=>15>AC>5
=>AC=10(cm)
=>ΔABC cân tại A
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
bài 1:cho tam giác ABC,M,N,P theo thứ tự là trung điểm của AB,AC,BC.Tính chu vi của tam giác MNP biết AB=8cm,AC=10cm,BC=12cm
Bài 2;tam giác ABC, AB=12 cm, AC=18cm, m là trung điểm của AB, MN//BC.tính âN, NC
Giải chi tiết giúp mình với ạ:(
Bài 3. Cho tam giác ABC vuông tại A, lấy điểm D trên cạnh BC. Kẻ DM vuông góc AB (M thuộc AB); DN vuông góc AC (N thuộc AC). Vẽ các điểm I và K sao cho M; N tương ứng là trung điểm của DI và DK. CMR:
a) tam giác AMD = tam giác AMI và tam giác AND = tam giác AKN.
b) I; A; K thẳng hàng.
c) A là trung điểm của IK.
d) Nếu AD là phân giác của góc A thì AD vuông góc với IK.
Giúp mik với mik cần gấp
a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có
AM chung
MD=MI
Do đó:ΔAMD=ΔAMI
Xét ΔAND vuông tại N và ΔANK vuông tại N có
AN chung
ND=NK
Do đó: ΔAND=ΔANK
b: \(\widehat{IAK}=2\cdot\left(\widehat{DAM}+\widehat{DAN}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
c: Ta có: I,A,K thẳng hàng
mà AI=AK(=AD)
nên A là trung điểm của KI
Bài 1:
Cho tam giác ABC;M là trung điểm BC.Kẻ MN//AB;N thuộc AC
Cm: a) N là trung điểm AC
b) MN=1/2AB
Bài 2:
Cho tam giác ABC gọi G là trọng tâm của tam giác ABC,M là trung điểm BC.Kẻ đường thẳng qua G//BC cắt AB,AC lần lượt tại D và E
a) cm: G là trung điểm DE
b) Tính tỉ số DE/BC=?
vẽ giúp mình hình luônn nhess
Cho 2 cái hình vì con chưa hc lp 8.
Bài 1
Bài 2 :
Bài 1:
Mượn hình bạn kia luôn nhé!
a) Vì M là trung điểm BC và MN//AB
=> N là trung điểm của AC (tính chất của đường trung bình)
b) Vì M là trung điểm của BC, N là trung điểm của AC
=> MN là đường trung bình của tam giác ABC
=> \(MN=\frac{1}{2}AB\)
Bài 2: (3 điểm) Cho tam giác ABC. Biết AC = 16cm, AB=BC=10cm. Lấy D đối xứng của C qua B. Tính độ dài AD. (HS tự vẽ hình)
Bài 3: (4 điểm) Cho tam giác ABC (AB < AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm AB, AC, BC. Chứng minh tứ giác MNPH là hình thang cân
mn giúp mik vs mik gần nộp cho thầy r (cảm mơn các bn nào giúp mik)
Bài 2:
D là điểm đối xứng của C qua B nên \(BC=BD\)
Lại có \(AB=BC=10\left(cm\right)\)
\(\Rightarrow AB=\dfrac{CD}{2}\)
Do đó tam giác ADC vuông tại A
Theo định lí Pitago ta có:
\(AD^2=DC^2-AC^2=20^2-16^2=144\)
\(\Rightarrow AD=12\left(cm\right)\)
Bài 3:
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//PH
Do đó MNPH là hình thang
Xét tg AHC vuông tại H có HN là trung tuyến ứng vs ch AC nên \(HN=\dfrac{1}{2}AC\)
Mà P,M là trung điểm BC,AB nên PM là đtb tg ABC
Do đó \(PM=\dfrac{1}{2}AC\)
Từ đó ta được PM=HN
Vậy MNPH là hình thang cân
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath