Những câu hỏi liên quan
NJ
Xem chi tiết
RA
Xem chi tiết
TD
9 tháng 7 2018 lúc 22:13

Vì ABCD là hình bình hành

=> + AB = DC

       AB // DC  => góc ABE = góc FCD  ( sole trong )

+     AD= BC

     AD // BC

+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :

\(AB=CD\left(cmt\right)\)

\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )

\(\widehat{ABE}=\widehat{FCD}\)(cmt)

Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )

\(\Rightarrow AE=FC\)( cặp cạnh tương ứng )               (1)

+)  vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)

=> AE // FC  (2)

Từ (1) và (2)

=>  AECF là hình bình hành ( đpcm )

    

Bình luận (0)
TD
9 tháng 7 2018 lúc 22:16

A B C D E F

Hình hơi xấu nha ^^

Bình luận (0)
JH
Xem chi tiết
NT
27 tháng 7 2021 lúc 13:36

Ta có: \(\widehat{DEA}=\widehat{EDC}\)(hai góc so le trong, AE//DC)

mà \(\widehat{EDC}=\widehat{ADE}\)(DE là tia phân giác của \(\widehat{ADC}\))

nên \(\widehat{ADE}=\widehat{AED}\)

Xét ΔAED có \(\widehat{ADE}=\widehat{AED}\)(cmt)

nên ΔAED cân tại A(Định lí đảo của tam giác cân)

Suy ra: AD=AE(đpcm)

Bình luận (0)
HP
Xem chi tiết
MA
Xem chi tiết
NT
25 tháng 3 2021 lúc 20:59

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bình luận (0)
HC
Xem chi tiết
LQ
17 tháng 3 2017 lúc 21:33

bạn tính đc DE chưa

Bình luận (0)
LQ
17 tháng 3 2017 lúc 21:35

bài này khá dễ ta chứng minh đc cho tam giác ADE = tam giác CFB suy ra DE = FB rùi tính đc DE sau đó sử dụng Pita go là ra

Bình luận (0)
ZT
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
KN
17 tháng 9 2020 lúc 11:28

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

Bình luận (0)
 Khách vãng lai đã xóa