Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NM
25 tháng 11 2021 lúc 7:07

\(ƯCLN\left(a,b\right)=12\Leftrightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(k>q;k,q\in N\text{*}\right)\\ a+b=96\\ \Leftrightarrow12\left(k+q\right)=96\\ \Leftrightarrow k+q=8\)

Mà \(k>q;\left(k,q\right)=1\)

\(\Leftrightarrow\left(k;q\right)\in\left\{\left(7;1\right);\left(5;3\right)\right\}\\ \Leftrightarrow\left(a;b\right)\in\left\{\left(84;12\right);\left(60;36\right)\right\}\)

Bình luận (0)
TN
Xem chi tiết
DH
26 tháng 1 2022 lúc 9:17

Vì \(\left(a,b\right)=12\)nên ta đặt \(a=12m,b=12n,m>0,n>0,\left(m,n\right)=1\).

\(\frac{a}{b}=\frac{12m}{12n}=\frac{m}{n}=\frac{49}{56}=\frac{7}{8}\)

suy ra \(m=7,n=8\)

\(\Rightarrow a=84,b=96\).

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
VM
Xem chi tiết
PD
Xem chi tiết
NT
7 tháng 10 2021 lúc 22:34

a: a=108; b=12

a=84; b=36

a=12; b=108

a=36; b=84

Bình luận (0)
VL
Xem chi tiết
AH
28 tháng 12 2023 lúc 0:09

Lời giải:
Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$a+b=96$

$\Rightarrow 12x+12y=96$

$\Rightarrow x+y=8$.

Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$

$\Rightarrow (a,b)=(12, 84), (36,60), (60,36), (84,12)$

Bình luận (0)
PA
Xem chi tiết
AH
13 tháng 11 2023 lúc 18:02

a, b: Bạn xem lại đề.

c.

Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=12x+12y=120\Rightarrow x+y=10$

Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:

$(x,y)=(9,1), (7,3)$

$\Rightarrow (a,b)=(108. 12), (84, 36)$

Bình luận (0)
AH
13 tháng 11 2023 lúc 18:04

d.

Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=28x+28y=224$

$\Rightarrow x+y=8$

Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$

$\Rightarrow (a,b)=(196, 28), (140, 84)$

Bình luận (0)
AH
13 tháng 11 2023 lúc 18:05

e. 

Vì $ƯCLN(a,b)=18$ và $a>b$ nên đặt $a=18x, b=18y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=18x+18y1944$

$\Rightarrow x+y=108$

Với điều kiện $x>y, (x,y)=1$ thì $x,y$ có thể nhận khá nhiều giá trị. Bạn có thể xét từng TH để tính toán nhé.

Bình luận (0)
HT
Xem chi tiết
DH
22 tháng 1 2021 lúc 15:46

\(ab=\left(a,b\right).\left[a,b\right]=12.144=1728\Rightarrow a=\frac{1728}{b}\).

\(a=b+12\Rightarrow\frac{1728}{b}=b+12\Rightarrow b=36\)(vì \(b\inℕ\)

\(b=36\Rightarrow a=48\).

Bình luận (0)
 Khách vãng lai đã xóa