Những câu hỏi liên quan
KT
Xem chi tiết
NT
30 tháng 10 2021 lúc 23:04

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBCD vuông tại B có BA là đường cao

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

Bình luận (0)
SK
Xem chi tiết
NT
16 tháng 5 2022 lúc 18:49

\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)

Bình luận (0)
NF
Xem chi tiết
TH
Xem chi tiết
KL
21 tháng 10 2021 lúc 8:58

\(sinC=\dfrac{3}{5}\Rightarrow\widehat{C}\approx37^o\)

Bình luận (0)
NT
Xem chi tiết
AT
7 tháng 6 2021 lúc 17:47

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

Bình luận (0)
NC
Xem chi tiết
NM
30 tháng 10 2021 lúc 20:43

\(AC=\sqrt{BC^2-AB^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\Rightarrow\widehat{B}=60^0\\ \widehat{C}=90^0-\widehat{B}=30^0\\ 2,\sin B\cdot\tan B=\dfrac{AC}{AB}\cdot\dfrac{AC}{BC}=\dfrac{AC^2}{AB\cdot BC}=\dfrac{HC\cdot BC}{AB\cdot BC}=\dfrac{HC}{AB}\\ 3,\dfrac{CI}{IB}=\dfrac{AC}{AB}=\sqrt{3}\Leftrightarrow CI=\sqrt{3}IB\\ CI+IB=BC=20\\ \Rightarrow\left(\sqrt{3}+1\right)IB=20\Leftrightarrow IB=\dfrac{20}{\sqrt{3}+1}=10\sqrt{3}-10\left(cm\right)\\ HB=\dfrac{AB^2}{BC}=5\left(cm\right)\left(HTL\right)\\ IH=IB-HB=10\sqrt{3}-15\left(cm\right)\)

Bình luận (0)
PN
Xem chi tiết
KC
Xem chi tiết
SK
Xem chi tiết
NH
1 tháng 6 2017 lúc 11:31

Hệ thức lượng trong tam giác vuông

Bình luận (0)
TH
Xem chi tiết