a, tìm các số từ nhiên a,b,c để số 356abc chia hết cho 5;7;9
b, cho S = 5+5^2+5^3+...+5^2013
cmr S chia hết cho 31
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các số tự nhiên a,b,c để 356abc chia hết cho 5; 7 và 9 ( 356abc là một số tự nhiên nha các bạn)
Tìm các số tự nhiên a,b,cđể số 356abc chia hết cho 5;7 và9
Tìm các số tự nhiên a; b; c để số 356abc (356abc ∈ N) chia hết cho 5; 7; 9
Trả lời:
a) 356abc chia hết cho 5; 7 và 9
⇒ 356abc chia hết cho BCNN (5,7,9)
⇒356abc chia hết cho 315
Ta thấy :
356999 chia cho 315 dư 104.
Do đó : 356999 ‐ 104 = 356895 chia hết cho 315
356895 ‐ 315 = 356580 chia hết cho 315
356580 ‐ 315 = 356265 chia hết cho 315
Cho mk hỏi bn là : vì sao lại là 356999 abc vì sao lại là 999 tớ vẫn còn phân vân ở đây mong các cậu giúp cho.
Tìm các STN a,b để số 356abc cgia hết cho 5,7 và9
tìm a,b,c để 356abc chia hết cho 5,7,9
356abc chia hết cho 5;7 và 9
\(\Rightarrow\) 356abc chia hết cho số nhỏ nhất chia hết cho 5,7,9
\(\Rightarrow\) 356abc chia hết cho 315
Ta thấy : 356999 chia cho 315 dư 104. Do đó :
356999 - 104 = 356895 chia hết cho 315
356895 - 315 = 356580 chia hết cho 315
356580 - 315 = 356265 chia hết cho 315
Đó là 3 số cần tìm. (in đậm)
1) a) Tìm các số tự nhiên a,b,c để số 356abc chia hết cho 5,7 và 9.
b) Cho S= 5 + 5^2 + 5^3 +... + 5^2013 . Chứng minh rằng S chia hết cho 31.
2) 2 vòi nước cùng chảy vào 1 bể nước thì sau 12 giờ sẽ đầy bể. Nếu 2 vòi cùng chảy trong 4 giờ rồi đóng vòi 1 sau đó cho vòi 2 chạy thêm 5 giờ nữa thì được 7/12 bể. Hỏi nếu chỉ chạy 1 mình mỗi vòi thì phải chạy hết mấy giờ mới đầy bể ?
3) a) Chứng minh rằng số A= 10^n + 18 x n -1 chia hết cho 27 ( n là số tự nhiên )
b) Chứng minh rằng với mọi số tự nhiên n phân số phân số sau tối giản: 16n + 3 / 12n +2
Câu 1 :
a) 356abc chia hết cho 5;7 và 9
\(\Rightarrow\)356abc chia hết cho BCNN (5,7,9)
\(\Rightarrow\)356abc chia hết cho 315
Ta thấy : 356999 chia cho 315 dư 104. Do đó :
356999 - 104 = 356895 chia hết cho 315
356895 - 315 = 356580 chia hết cho 315
356580 - 315 = 356265 chia hết cho 315
Đó là 3 số cần tìm.
b) S= 5 + 52 + 53 + ........ + 52013
Tổng S có 2013 có số, nhóm 3 số vào 1 nhóm thì vừa hết
Ta có :
S = (5 + 52 + 53) + (54 + 55 + 56) +........+ (52011 + 52012 + 52013)
S = (5 + 52 + 53) + 53(5 + 52 + 53) + ......+ 52010(5 + 52 + 53)
S = 5(1 + 5 + 52) + 54(1 + 5 + 52) + .......+ 52011(1 + 5 + 52)
S = 5 . 31 + 54 . 31 + .......+ 52011 . 31
S = 31(5 + 54 + ......+ 52011) chia hết cho 31
Bài 3 :
a) 10n + 18n - 1 = 10n - 1 - 9n + 27n = 999 ...9 - 9n + 27n = 9(11....1 - n) + 27n chia hết cho 27
(n chữ số 9) (n chữ số 1)
99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Tìm a,b,c thuộc N để 356abc chia hết cho 5,7,9
356abc chia hết cho 5,7 và 9.
=>356abc chia hết cho số nhỏ nhất chia hết cho 5,7 và 9
=>356abc chia hết cho 315.
Ta thấy:356999 chia cho 315 dư 104.Do đó
356999 - 104 = 356895 chia hết cho 315
356895 - 104 = 356580 chia hết cho 315
356580 - 104 = 356265 chia hết cho 315
Vậy số cần tìm là 895,580 và 265.
I love you: t k hiểu lắm. . Gt ik
bài:
a) tìm các số tự nhiên x,y sao cho (2*x+1)*(y-5)=12
b) tìm số tự nhiên n sao cho 4*n-5 chia hết 2n-1
c) tìm số tự nhiên x sao cho x+3 chia hết x mũ 2 +1
d) tìm tất cả các số B=62xy427(có gạch trên đầu),biết rằng số B chia hết cho 99
e) tìm các số tự nhiên a và b để A= 25a2b(có gạch trên đầu) chia hết cho 36 và số B=a378b(có gạch trên đầu)chia hết cho 72
g) tìm số tự nhiên a,b để A=4a1b(có gạch trên đầu) chia hết cho 12
làm xong vui lòng các bạn chụp ảnh lên ( bài lầm đầy đủ ko tẩy xóa)
1,tìm các số tự nhiên a,b,c để số356abc cia hết cho 5 ;7 ;9
2,Cho S = 5+52+53+...+52013
Chứng minh rằng Schia hết cho31
2x2y-x2-2y-2= 0 (tìm x,y thuộc P)
3,Biết n! =1.2.3...n (n thuộc N nhưng khác 0 ; n>_2
CMR: A= 1/2+2/3+.....+2013/2014<1
A) Tìm các chữ số a,b để số 2a3b chia hết cho cả 2 ; 5 và 9
B) Tìm ước chung của các số 42 ; 54
C) Tìm các số tự nhiên N để N + 4 chia hết cho N + 1
a: Đặt \(A=\overline{2a3b}\)
A chia hết cho2 và 5 khi A chia hết cho 10
=>b=0
=>\(A=\overline{2a30}\)
A chia hết cho 9
=>2+a+3+0 chia hết cho 9
=>a+5 chia hết cho 9
=>a=4
Vậy: \(A=2430\)
b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)
=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)
=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
c: \(n+4⋮n+1\)
=>\(n+1+3⋮n+1\)
=>\(3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)