Những câu hỏi liên quan
PB
Xem chi tiết
CT
14 tháng 1 2019 lúc 9:37

Ta có yêu cầu bài toán tương đương với:

Vậy có tất cả 7 số nguyên thoả mãn.

Chọn đáp án B.

Bình luận (0)
AN
Xem chi tiết
NC
7 tháng 1 2021 lúc 20:50

TH1 : Đồ thị hàm số y = 3mx2 - (m - 9)x + 8  - m2 có hai điểm phân biệt đối xứng nhau qua gốc tọa độ khi hàm số trên là hàm số lẻ trên tập xác định R

Khi đó f(x) + f(-x) = 0

⇒ 3mx2 + 3mx2 - (m - 9)x + 8- m2 + (m - 9)x - m2 + 8 = 0

⇒ 6mx2 + 16 = 0 (không có m) 

 

 

 

 

 

 

Bình luận (1)
NL
7 tháng 1 2021 lúc 21:10

Có 2 điểm nghĩa là chỉ cần tồn tại 2 điểm thôi, không phải "với mọi" như là hàm lẻ (hàm lẻ thì đối xứng qua gốc tọa độ với mọi x)

Giả sử tồn tại điểm A có hoành độ \(x=a\) và B là điểm thuộc (P) đồng thời đối xứng A qua gốc tọa độ 

\(\Rightarrow\left\{{}\begin{matrix}x_A=-x_B\\y_A=-y_B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=-a\\y_A+y_B=0\end{matrix}\right.\)

\(\Rightarrow3ma^2-\left(m-9\right)a+8-m^2+\left[3ma^2+\left(m-9\right)a+8-m^2\right]=0\)

\(\Leftrightarrow6ma^2+16-2m^2=0\) (m=0 không thỏa mãn)

\(\Leftrightarrow a^2=\dfrac{m^2-8}{3m}\)

Do \(a^2\ge0\Rightarrow\dfrac{m^2-8}{3m}\ge0\)

\(\Rightarrow m\in[-2\sqrt{2};0)\cup[2\sqrt{2};+\infty)\)

\(\Rightarrow\) Có \(2019-3+1=2017\) giá trị nguyên của m thỏa mãn

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2017 lúc 9:30

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 12 2017 lúc 17:55

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 5 2017 lúc 18:30

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 8 2018 lúc 4:29

Chọn B

Phương pháp:

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Ta sử dụng phương trình  có hai nghiệm dương phân biệt 

Cách giải:

Ta có 

 

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Khi đó 

Mà  nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 4:59

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 4 2018 lúc 10:11

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 8 2018 lúc 3:20

Ta có:

⇒ *  luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2  với mọi m.

Áp dụng hệ thức Vi-ét ta có:

Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.

 

Chọn B.

Bình luận (0)