Những câu hỏi liên quan
G6
Xem chi tiết
TN
4 tháng 11 2018 lúc 17:01

Dựa theo tính chất của dãy tỉ số bằng nhau, ta có: 

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)

Rút gọn đi, ta có:

\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)

Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)

Kết luận: .....

Bình luận (0)
KS
4 tháng 11 2018 lúc 17:06

Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)

\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)

Có: \(x+y+z=49\)

\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)

\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)

\(k.\frac{49}{12}=49\)

\(\Rightarrow k=12\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)

Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)

Tham khảo nhé~

Bình luận (0)
G6
Xem chi tiết
NA
Xem chi tiết
HH
8 tháng 10 2021 lúc 16:58

Ta có: \(x^2-y^2=x^2-xy+xy-y^2=x\left(x-y\right)+y\left(x-y\right)\)

                                          \(=\left(x-y\right)\left(x+y\right)=38\)(1)

Mặt khác: \(\frac{3}{5x}=\frac{2}{3y}\Leftrightarrow10x=9y\Leftrightarrow x=\frac{9y}{10}\). THAY VÀO (1) TA ĐƯỢC:

     (1) \(\Leftrightarrow\left(\frac{9y}{10}-y\right)\left(\frac{9y}{10}+y\right)=38\)

          \(\Leftrightarrow\frac{-y}{10}.\frac{19y}{10}=38\)

           \(\Leftrightarrow\frac{-19y^2}{100}=38\Leftrightarrow y^2=\frac{38.100}{-19}=-200\)(VÔ LÍ)

Vậy không có x,y đâu nha

Bình luận (0)
 Khách vãng lai đã xóa
NA
8 tháng 10 2021 lúc 17:04

\(\frac{3}{5}x=\frac{5}{4}y\)\(\hept{\begin{cases}\frac{3x}{5}=\frac{2y}{3}\\x^2-y^2=38\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{6x}{10}=\frac{6y}{9}=\frac{6x-6y}{10-9}=6\left(x-y\right)\\\left(x-y\right)\left(x+y\right)=38\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{10}=x-y\\\left(x-y\right)\left(x+y\right)=38\end{cases}}}\)

Từ phương trình (1) ta suy ra 

                 \(y=\frac{9x}{10}\)Thay  \(\left(x-y\right)=\frac{x}{10}\)và   \(y=\frac{9x}{10}\) vào phương tfinhf (2) được \(\frac{x}{10}\left(x+\frac{9x}{10}\right)=38\Leftrightarrow\frac{19x^2}{100}=38\Leftrightarrow x^2=200\)\(\Leftrightarrow|x|=10\sqrt{2}\)\(x_1=10\sqrt{2}\)\(x_2=-10\sqrt{2}\)

Suy ra \(y_1=\frac{9x_1}{10}=\frac{9.10\sqrt{2}}{10}=9\sqrt{2}\)và \(y_2=\frac{9x_2}{10}=\frac{9.\left(-10\sqrt{2}\right)}{10}=-9\sqrt{2}\)

Hệ phương trình có hai nghiệm \(\left(10\sqrt{2};9\sqrt{2}\right)\) và  \(\left(-10\sqrt{2};-9\sqrt{2}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HG
8 tháng 10 2021 lúc 16:39

Ta có: \(\frac{3}{5}x=\frac{2}{3}y\)

\(\Rightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{5}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{5}}=\frac{x^2-y^2}{\frac{4}{9}-\frac{9}{25}}=\frac{38}{\frac{19}{225}}=450\)

\(\Rightarrow\hept{\begin{cases}x=\frac{2}{3}.450=300\\y=\frac{3}{5.450=270}\end{cases}}\)

Vậy \(x=300;y=270\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DP
13 tháng 8 2017 lúc 6:59

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) 

Ta có  :

\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\)(1)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}\)(2) 

Từ (1) và (2) ; Suy ra : \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ; ta được : 

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{20}=-25\\\frac{y}{15}=-25\\\frac{z}{9}=-25\end{cases}\Rightarrow\hept{\begin{cases}x=-500\\y=-375\\z=-225\end{cases}}}\)

Vậy .................

Bình luận (0)
TH
Xem chi tiết

Ta có x/y = 5/7 

=> x/5 = y/7 và x + y = 4.08

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

x/5 = y/7 = x+y/5+7 = 4.08/12 = 0.34

=> x/5 = 0.34 => x = 0.34 x 5 = 1.7 

     y/7 = 0.34 => y = 0.34 x 7 = 2.38

Vậy x = 1.7 ; y = 2.38 

HOk tốt!!!!!!!!!!!!!

Bình luận (0)
 Khách vãng lai đã xóa
TH
2 tháng 9 2021 lúc 11:23

Theo bài ra ta có:\(\frac{x}{y}=\frac{5}{7}\Leftrightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)

 Do đó: x=0,34.5=1,7

y=0,34.7=2,38

Vậy x=1,7 và y=2,38

Bình luận (0)
 Khách vãng lai đã xóa
WD
Xem chi tiết
NT
31 tháng 8 2021 lúc 14:52

Ta có: \(\dfrac{2}{x}=\dfrac{y}{9}\)

nên xy=18

Đạt \(\dfrac{x}{4}=\dfrac{y}{8}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)

Ta có: xy=18

\(\Leftrightarrow32k^2=18\)

\(\Leftrightarrow k^2=\dfrac{9}{16}\)

Trường hợp 1: \(k=\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=3\\y=8k=6\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-3\\y=8k=-6\end{matrix}\right.\)

Bình luận (0)
MH
Xem chi tiết
H24
14 tháng 7 2021 lúc 19:46

sai đề kìa

Bình luận (0)
H24
14 tháng 7 2021 lúc 19:49

x/5=y/4

áp dụng tính chất dãy tỉ số bằng nha ta có:

x/5=y/4=x+y/5+4=27/9=3

=>x/5=3 =>x=15

=>y/4=3 =>y=12

Bình luận (0)
NT
14 tháng 7 2021 lúc 22:38

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x+y}{5+4}=\dfrac{27}{9}=3\)

Do đó: x=15; y=12

Bình luận (0)
LH
Xem chi tiết
NH
16 tháng 8 2019 lúc 10:35

Ta có: \(\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1-7y}{5x-4x}=\frac{-2y}{x}\)

\(\Rightarrow\frac{1+5y}{5x}=\frac{-2y}{x}\)\(\Rightarrow\frac{1+5y}{5}=-2y\)\(\Rightarrow1+5y=-10y\)\(\Rightarrow15y=-1\)\(\Rightarrow y=\frac{-1}{15}\)

Ta có: \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)\(\Rightarrow5x=\frac{\frac{2}{3}.12}{\frac{4}{5}}=10\)\(\Rightarrow x=2\)

Bình luận (0)
HN
Xem chi tiết
OP
29 tháng 7 2016 lúc 20:05

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=-1\)

\(\Rightarrow\frac{2x}{6}=-1\Rightarrow2x=-6\Rightarrow x=-3\)

\(\Rightarrow\frac{3y}{15}=-1\Rightarrow3y=-15\Rightarrow y=-5\)

\(\Rightarrow\frac{z}{7}=-1\Rightarrow z=-7\)

Bình luận (0)
OO
29 tháng 7 2016 lúc 20:06

theo đề ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = -14

=> \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)

Áp dụng t/c DTSBN ta có:

\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=\frac{-14}{14}\)  = \(-1\)

=> \(\frac{x}{3}=-1=>x=-3\)

\(\frac{y}{5}=-1=>y=-5\)

\(\frac{z}{7}=-1=>z=-7\)

t i c k nha!! 4354565475677687978873535752456465465765786876897978

Bình luận (0)
CT
29 tháng 7 2016 lúc 20:35

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{3+5-7}=-\frac{14}{1}=-14\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-14\Rightarrow\left(-14\right)\cdot3=-42\\\frac{y}{5}=-14\Rightarrow\left(-14\right)\cdot5=-70\\\frac{z}{7}=-14\Rightarrow\left(-14\right)\cdot7=-98\end{cases}}\)

Vậy \(x=-42\)\(y=-70\)\(z=-98\)

Bình luận (0)