HK
Xem chi tiết
DH
6 tháng 4 2017 lúc 11:27

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

Bình luận (0)
NM
6 tháng 4 2017 lúc 11:26

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

Bình luận (0)
ND
6 tháng 4 2017 lúc 11:41

Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.

Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:

\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)

Vậy a=5 và b=7

Bình luận (0)
NS
Xem chi tiết
ND
29 tháng 3 2021 lúc 22:22

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

Bình luận (0)
 Khách vãng lai đã xóa
NS
30 tháng 3 2021 lúc 19:53

đồng nhất hệ số mình chưa học nha

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TV
Xem chi tiết
TC
7 tháng 5 2022 lúc 23:17

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

Bình luận (0)
TC
7 tháng 5 2022 lúc 23:15

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

Bình luận (0)
AH
7 tháng 5 2022 lúc 23:17

Lời giải:
Ta thấy:

$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$

$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$

Do đó $x=0$ không phải nghiệm của $Q(x)$

Bình luận (2)
WS
Xem chi tiết
H24
Xem chi tiết
NH
6 tháng 3 2018 lúc 20:25

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

Bình luận (0)
MS
6 tháng 3 2018 lúc 23:38

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-

Bình luận (1)
H24
6 tháng 3 2018 lúc 20:16

@phynit, giải hộ em !

Bình luận (0)
L1
Xem chi tiết
NA
Xem chi tiết
NT
5 tháng 4 2017 lúc 21:14

Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)

\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)

\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy nghiệm của đa thức m(x) là 1 hoặc -8

b) \(\left(x-3\right)\left(16-4x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

Vậy nghiệm của đa thức g(x) là 3 hoặc 4

c) \(5x^2+9x+4=0\)

\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)

\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)

Vậy...

Bình luận (0)
HD
Xem chi tiết
NL
12 tháng 5 2018 lúc 20:29

g(x)=0<=>\(\left(\dfrac{2}{3}x+3\right)\left(\dfrac{3}{5}-1\right)=0\)<=>\(\left\{{}\begin{matrix}\dfrac{2}{3}x+3=0\\\dfrac{3}{5}x-1=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy .....

Bình luận (0)
NS
Xem chi tiết
KS
15 tháng 4 2019 lúc 8:42

Nghiệm của đa thức một biến

Bình luận (0)