Những câu hỏi liên quan
TM
Xem chi tiết
TT
28 tháng 10 2021 lúc 21:29

1, bội chung

2, bội chung nhỏ nhất

HT và $$ 

Bình luận (0)
 Khách vãng lai đã xóa
TM
28 tháng 10 2021 lúc 21:30

thank you very

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
BB
Xem chi tiết
N6
7 tháng 3 2023 lúc 20:04

C

Bình luận (0)
LD
Xem chi tiết
NN
Xem chi tiết
NL
8 tháng 8 2015 lúc 16:51

Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)

Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 

Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30 

=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30. 

=> a^5 - a chia hết cho 30 

=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*) 

Do (a+b+c) chia hết cho 30 

(*) => (a^5+b^5+c^5) chia hết cho 30

Đó là câu trả lời đúng.hihi :) 

Bình luận (0)
BN
5 tháng 12 2017 lúc 15:20

Ta xét (a^5 -a) + (b^5 -b) + (c^5 -c) 

Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 

Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30 

=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30. 

=> a^5 - a chia hết cho 30 

=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*) 

Do (a+b+c) chia hết cho 30 

(*) => (a^5+b^5+c^5) chia hết cho 30

Bình luận (0)
TH
19 tháng 1 2018 lúc 21:23

Ta có :a^5-a=a(a^4-1)=a(a^2-1)(a^2+1)=a(a-1)(a+1)(a^2-4+5)

=a(a-1)(a+1)(a^-4)+5a(a+1)(a-1)

=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1)

Vì (a-2)(a-1)a(a+1)(a+2) là tích của 5 số hạng liên tiếp 

=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5

Lại có (a-2)(a-1) là tích của hai số liên tiếp =>(a-2)(a-1) chia hết cho 2  => (a-2)(a-1)a(a+1)(a+2) chia hết 

Mà (2;5)=1 => (a-2)(a-1)a(a+1)(a+2)+ 5a(a+1)(a-1) chia hết cho 30

Hay a^5-a chia hết cho 30                  (1)

CMTT ta được: b^5-b chia hết cho 30  (2)

                       c^5-c chia hết cho30   (3)

Cộng (1),(2),(3) ta được a^5+b^5+c^5-(a+b+c) chia hết cho 30

Mà (a+b+c) =0

Luôn chia hết cho 30

=>a^5+b^5+c^5 chia hết cho 30

Vậy a^5+b^5+c^5 chia hết cho 30

Bình luận (0)
RZ
Xem chi tiết
HP
30 tháng 9 2016 lúc 21:25

a5-a=a(a4-1)=a[(a2)2-1]=a(a2-1)(a2+1)

=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a2-4)+5a(a-1)(a+1)

=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1)

+Số hạng đầu là tích 2 SN liên tiếp nên chia hết cho 30

+Số hạng thứ 2 có tích 3 SN liên tiếp chia hết cho 6 nên chia hết cho 30

=>a5-a chia hết cho 30 (đpcm)

Bình luận (0)
DT
Xem chi tiết
PL
4 tháng 8 2019 lúc 21:31

Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)

Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)

\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)

Hay \(a^5-a\)\(⋮\)\(30\)

Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30 

\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)

Mà \(a+b+c\)\(⋮\)\(30\)

\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)

Bình luận (0)
DN
Xem chi tiết
H9
9 tháng 8 2023 lúc 8:09

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)

\(A=30+5\cdot30+...+5^{28}\cdot30\)

\(A=30\cdot\left(1+5+...+5^{28}\right)\)

Vậy A chia hết cho 30

Bình luận (0)
H9
9 tháng 8 2023 lúc 8:11

\(A=5+5^2+....+5^{30}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)

\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)

Vậy A chia hết cho 31

Bình luận (0)
H9
9 tháng 8 2023 lúc 8:06

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^{29}\cdot\left(1+5\right)\)

\(A=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)

\(A=6\cdot\left(5+5^3+...+5^{29}\right)\)

Vậy A chia hết cho 6

Bình luận (0)
LA
Xem chi tiết
H24
Xem chi tiết
NB
5 tháng 2 2017 lúc 20:05

303x30=(....x30)+(3x30)

=(3+300)x30=(300x30)+(3x30)

vay C.300 là đáp án đúng

nho kick cho mik nhá

Bình luận (0)
H24
5 tháng 2 2017 lúc 19:58

mik chọn đáp án C nhé

chon mik nhé

Bình luận (0)
VG
5 tháng 2 2017 lúc 19:59

mình nghĩ là đáp án C

Bình luận (0)