Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;-1;2) và có một véc tơ pháp tuyến n → = ( 2 ; 2 ; - 1 ) . Phương trình của (P) là:
A. 2x + 2y - z - 7 = 0
B. 2x + 2y - z + 2 = 0
C. 2x + 2y - z - 6 = 0
D. 2x + 2y - z - 2 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1). Gọi (P) là mặt phẳng đi qua A và cách gốc tọa độ một khoảng lớn nhất. Khi đó, mặt phẳng (P) đi qua điểm nào sau đây?
A. M 1 − 1 ; − 2 ; 0
B. M 2 1 ; − 2 ; 0
C. M 3 − 1 ; 2 ; 0
D. M 4 1 ; 2 ; 0
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;2) và mặt phẳng (P): 2x-y+z+1=0. Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P đi qua các điểm A - 2 ; 0 ; 0 , B 0 ; 3 ; 0 , C 0 ; 0 ; - 3 . Mặt phẳng P vuông góc với mặt phẳng nào trong các mặt phẳng sau?
A. Q 1 : x + y + z + 1 = 0
B. Q 2 : x - 2 y - z - 3 = 0
C. Q 3 : 2 x + 2 y - z - 1 = 0
D. Q 4 : 3 x - 2 y + 2 z + 6 = 0
Chọn đáp án C
Phương trình mặt phẳng (P) theo đoạn chắn
Dễ thấy mặt phẳng (P) vuông góc với mặt phẳng Q 3 có phương trình 2 x + 2 y - z - 1 = 0 vì tích vô hướng của hai vectơ pháp tuyến bằng 0.
Trong không gian với hệ tọa độ Oxyz cho điểm \ A 1 ; - 1 ; 2 và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là
A. 2 x - y + z = 0
B. x + y + z - 2 = 0
C. 2 x + y - z + 1 = 0
D. 2 x - y + z - 5 = 0
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các hình chiếu của điểm A(1 ;2 ;3) trên các trục tọa độ là:
Đáp án C.
Hình chiếu của A(1 ;2 ;3) lên trục Ox là M(1;0;0)
Hình chiếu của A(1 ;2 ;3) lên trục Oy là N(0;2;0)
Hình chiếu của A(1 ;2 ;3) lên trục Ox là P(0;0;3)
Phương trình mặt phẳng (P) cần tìm là:
Trong không gian với hệ tọa độ Oxyz cho điểm Phương trình mặt phẳng ( Q ) đi qua các hình chiếu của điểm A lên các trục tọa độ là
A . ( Q ) : x - y + 2 z - 2 = 0
B . ( Q ) : 2 x - 2 y + z - 2 = 0
C . ( Q ) : x - 1 + y 1 + z - 2 = 1
D . ( Q ) : x - y + 2 z + 6 = 0
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-1;2) và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P) có phương trình là
A. Q : 2 x - y + z - 5 = 0
B. Q : 2 x - y + z = 0
C. Q : x + y + z - 2 = 0
D. Q : 2 x + y - z + 1 = 0
Chọn đáp án A
Mặt phẳng (Q) đi qua điểm A(1;-1;2) và song song với P : 2 x - y + z + 1 = 0 nên có phương trình:
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-4;-5). Tọa độ điểm A’ đối xứng với điểm A qua mặt phẳng Oxz là
A. (1, -4,5)
B. (-1,4,5)
c
D. (1,4,-5)
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;–4;–5). Tọa độ điểm A’ đối xứng với điểm A qua mặt phẳng Oxz là
A. (1;–4;5)
B. (–1;4;5)
C. (1;4;5)
D. (1;4;–5)