Cho tập hợp \(A=\left\{8;10\right\}\). Điền kí hiệu \(\in,\subset\) hoặc \(=\) vào chỗ trống (...) :
a) \(8.....A\)
b) \(\left\{10\right\}.....A\)
c) \(\left\{8;10\right\}.....A\)
Cho 2 tập hợp
\(\left\{\text{A=9;12;15;18;...;201}\right\}\) và B=\(\left\{9;12;15;18;...;201\right\}\)
a. Tính số phần tử của mỗi tập hợp trên
b. viết tập hợp c gồm các phần tử vừa thuộc tập hợp A và thuộc tập hợp B bằng hai các ( liệt kê và chỉ ra tính đặc trưng)
a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)
\(B=A\) nên cũng có 65 phần tử
b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)
\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)
Giá trị của \(a\in N\), để 2 tập hợp \(A\left(-\infty;8\right)\cup\left(12;+\infty\right)\) và \(B\left(a;2a\right)\) có tập hợp là R
Cho tập hợp CRA = \([-3;\sqrt{8})\), CRB = \(\left(-5;2\right)\cup\left(\sqrt{3};\sqrt{11}\right)\). Tập CR\(\left(A\cap B\right)\) ?
A ) \(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a, RÚT GỌN Q
b, TÌM x THUỘC TẬP HỢP Z ĐỂ Q THUỘC TẬP HỢP Z
vào thống kê xem link nhé:
Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath
1, Cho tập hợp sau :
\(A=\left\{x\in N\left|x\le7\right|\right\}\)
Hỏi : A có bao nhiêu phần tử, đó là các phần tử nào và nêu 3 số \(\notin\)A
2, Cho tập hợp B
\(B=\left\{x\in N\left|1< x< 5\right|\right\}\)
Hãy viết ra các tập hợp là tập hợp con của tập hợp B mà mỗi tập hợp có 3 phần tử
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
Cho tập hợp : \(A=\left\{1,a,b,2\right\}\). Hãy viết các tập hợp con của tập hợp trên.
\(\left\{1\right\};\left\{a\right\};\left\{b\right\};\left\{2\right\}\)
Các tập hợp con của A là:
{1};{a}; {b}; {2}; {1;a}; {1;b}; {1;2}; {a;b}; {a;2}; {b;2}; {1;a;b}; {a;b;2}
Cho tập hợp \(M=\left\{a,b,c\right\}\). Viết các tập hợp con của tập hợp M sao cho mỗi tập hợp con đó có hai phần tử ?
Ta viết được 3 tập hợp con:
Gọi 3 tập hợp đó là A,B,C
A={ a,b}
B={b,c}
C={a,c}
Gọi N là số tập hợp con có 2 phần tử của M
N={a;b}
N={b;c}
N={a;c}
cho hai tập hợp A=(x thuộc n*/x<8) và B=(x thuộc N/x-8=12)
a)Viết tập hợp trên bằng cách liệt kê phần tử
b)Viết tập hợp C gồm các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
\(a,A=\left\{1;2;3;4;5;6;7\right\}\\ x-8=12\Rightarrow x=20\\ B=\left\{20\right\}\\ b,C=\left\{1;2;3;4;5;6;7\right\}\)
Cho tập hợp A gồm n phần tử \(\left(n\ge4\right)\). Biết rằng số tập hợp con gồm 4 phần tử của A bằng 20 lần số tập hợp con gồm 2 phần tử của A. Tìm \(k\in\left[1,2,.....,n\right]\) sao cho số tập con gồm k phần tử của tập hợp A là lớn nhất.
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
Cho tập hợp A gồm các bội của 8, tập hợp B gồm các bội của 100, tập hợp C gồm các bội chung của 8 và 100. Hãy nêu mối quan hệ giữa tập hợp C với hai tập hợp A và B.
A. C⊂A,C⊂B
B. A⊂C,B⊂C
C. C⊂A,B⊂C
D. A⊂C,C⊂B