Những câu hỏi liên quan
SL
Xem chi tiết
HN
6 tháng 10 2016 lúc 21:26

Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(

Bình luận (2)
SL
6 tháng 10 2016 lúc 21:36

mik đăng cái khác rồi đó

 

Bình luận (0)
NN
22 tháng 11 2016 lúc 21:20

khó đọc

Bình luận (0)
PA
Xem chi tiết
SL
Xem chi tiết
SL
Xem chi tiết
DM
Xem chi tiết
NT
30 tháng 11 2023 lúc 21:39

bạn xem lại đề bài xem bạn viết có đúng ko

Bình luận (0)
SL
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 9 2017 lúc 14:27

Ta có: C = 2(x2 - yz + z2 ) + 3(3yz - z2 + 5x2 )

= 2x2 - 2yz + 2z2 + 9yz - 3z2 + 15x2

= 17x2 - z2 + 7yz. Chọn B

Bình luận (0)
TH
Xem chi tiết
BA
Xem chi tiết
AH
26 tháng 1 2021 lúc 13:30

Bạn tham khảo lời giải tại đây:

cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24

Bình luận (0)
AH
26 tháng 1 2021 lúc 13:35

Cách khác:

Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)

\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)

Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)

Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$

Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$

BĐT $(*)$ trở thành:

$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$

$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$

$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$

Điều này đúng với mọi $\sqrt{3}< a\leq 3$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 6 2017 lúc 17:28

Bình luận (0)