Cho ba hàm số: y = 1 2 x 2 ; y = x 2 ; y = 2 x 2
Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
Cho ba hàm số y = x 3 , y = x 1 5 , y = x - 2 . Khi đó đồ thị của ba hàm số y = x 3 , y = x 1 5 , y = x - 2 lần lượt là
Cho ba hàm số y = x 3 ; y = x 1 5 ; y = x - 2 . Khi đó đồ thị của ba hàm số y = x 3 ; y = x 1 5 ; y = x - 2 lần lượt là
A. (C3); (C2); (C1)
B. (C2); (C3); (C1)
C. (C2); (C1); (C3)
D. (C1); (C3); (C2)
Cho hàm số y = f(x) = 2 (x) Tính f(1) ; f (1/2) f(-1/2) vẽ đồ thị của hàm số trên . Biểu diễn các điểm A(2;-2) ; B(-1 ;- 2) ; C(3;4)trên hệ trục tọa độ .Trong ba điểm A ,B, C ở câu c điểm nào thuộc ,không thuộc đồ thị hàm số y = 2x,Vì sao?
Cho hàm số y = f ( x ) liên tục trên ℝ và có đồ thị như hình vẽ bên. Xét 4 mệnh đề sau
(1) Hàm số y = f ( x ) đạt cực đại tại x 0 = 0
(2) Hàm số y = f ( x ) có ba cực trị.
(3) Phương trình y = f ( x ) có đúng ba nghiệm phân biệt
(4) Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Hỏi trong 4 mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 1
B. 3
C. 4
D. 2
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Cho hàm số y = x 3 - 3 x 2 + 1 . Ba tiếp tuyến tại giao điểm của đồ thị hàm số với đường thẳng y = x - 2 có tổng các hệ số góc là:
A. 15
B. 33
C. 36
D. 17
Phương trình hoành độ giao điểm của hai đồ thị:
Ba tiếp tuyến tại giao điểm của đồ thị hàm số với đường thẳng y = x - 2 có tổng các hệ số góc là: 9 + 9 + (-3) = 15.
Chọn A.
Cho hàm số y=f(x) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số y = f 4 x - 4 x 2 có bao nhiêu điểm cực trị?
A.5
B.2
C.3
D.4
Cho hàm số y=f(x) có đúng ba điểm cực trị là - 2 ; - 1 ; 0 và có đạo hàm liên tục trên R. Khi đó hàm số y = f ( x 2 - 2 x ) có bao nhiêu điểm cực trị?
A. 6
B. 4
C. 5
D. 3
Cho hàm số y = f(x) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số y = f ( 4 x - 4 x 2 ) có bao nhiêu điểm cực trị?
A. 5.
B. 2.
C. 3.
D. 4.
Chọn C.
Ta có
Do đó hàm số y = f ( 4 x - 4 x 2 ) có ba điểm cực trị là 0; 1 2 ;1
Cho ba hàm số: \(y=\dfrac{1}{2}x^2;y=x^2;y=2x^2.\)
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B ,C có cùng hoành độ x = -1,5 theo thứ tự nằm trêm ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A'; B';C' có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A'; B và B'; C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
a) Vẽ đồ thị
b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:
yA = . (-1,5)2 = . 2,25 = 1,125
yB = (-1,5)2 = 2,25
yC = 2 (-1,5)2 = 2 . 2,25 = 4,5
c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:
yA, = . 1,52 = . 2,25 = 1,125
yB, = 1,52 = 2,25
yC’ = 2 . 1,52 = 2 . 2,25 = 4,5
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.
Vậy x = 0 thì hàm số có giả trị nhỏ nhất.
A,Biết điểm o,a thuộc hàm số y bằng 1/2 x. Tìm toạ độ M(2;m) để ba điểm 0,A,M thẳng hàng.
B. cho hàm số y=f(x)=ax+b. Tìm a,b biết f(0)=2 và f(1)=-1