Những câu hỏi liên quan
TT
Xem chi tiết
CD
1 tháng 1 2016 lúc 15:14

em học lớp 6 ko làm được

Bình luận (0)
TT
2 tháng 1 2016 lúc 7:23

Ko làm đc thì e comment làm gì hả con gai luon dung

Bình luận (0)
HP
Xem chi tiết
TT
20 tháng 1 2016 lúc 21:35

Cộng vế với vế của ba đẳng thức ta đc :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)

Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)

<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)

=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)

CMTT với 1/b+1 và 1/c+1 

=> ĐPCM 

Bình luận (0)
TN
Xem chi tiết
DH
Xem chi tiết
XO
31 tháng 10 2021 lúc 23:02

Ta có ax + by = c ; by + cz = a

<=> cz - ax = a - c (1)

mà cz + ax = b (2) 

Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)

=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)

Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\)\(\frac{1}{y+1}=\frac{2b}{a+b+c}\)

=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
LL
Xem chi tiết
TH
1 tháng 4 2022 lúc 22:28

\(2x-2y=by+cz-cz-ax=by-ax\)

\(\Rightarrow2x-2y=by-ax\)

\(\Rightarrow2x+ax=2y+by\)

\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)

\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)

\(2z-2y=ax+by-cz-ax=by-cz\)

\(\Rightarrow2z+cz=2y+by\)

\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)

\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)

\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)

 

Bình luận (0)
HP
Xem chi tiết
BK
Xem chi tiết
VG
31 tháng 7 2017 lúc 21:28

đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc

Bình luận (0)
BK
31 tháng 7 2017 lúc 21:33

giai ho minh di

Bình luận (0)
TA
31 tháng 7 2017 lúc 21:36

Dành cho các bạn chuyên toán nè? | Yahoo Hỏi & Đáp

Bình luận (0)
BK
Xem chi tiết
NA
6 tháng 8 2017 lúc 9:43

Theo BĐT Bunhia ta có  (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z

suy ra a/x=b/y=c/z

Bình luận (0)
BK
6 tháng 8 2017 lúc 9:53

bạn có thể cm HỘ MÌNH bdt bUNHIA ĐC KO AK

Bình luận (0)
JV
Xem chi tiết