Cho các số a,b,c ≠ -1 và thỏa mãn: x= by + cz; y = ax + cz; z= ax + by. CMR
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Mik đang cần rất gấp. Mong các bạn giúp mik, cảm ơn các bạn nhiềuu
Cho các số a;b;c khác -1 và các số x;y;z thỏa mãn điều kiện:
x=by+czy=cz+axz=ax+byTính giá trị biểu thức \(A=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
Ko làm đc thì e comment làm gì hả con gai luon dung
Cho các số dương a,b,c,x,y,z thỏa mãn x=by+cz;y=ax+cz;z=ax+by
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
cho các số a;b;c khác -1 thỏa mãn \(\hept{\begin{cases}x=by+cz\\y=cz+ax\\z=ax+by\end{cases}}\)
tính giá trị A=\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)
cho a,b,c,x,y,z thỏa mãn: ax+by=c, by+cz=a, cz+ax=b, x,y,z khác -1, (a+b+c) khác 0. Tính P=1/(x+1)+1/(y+1)+1/(z+1)
Ta có ax + by = c ; by + cz = a
<=> cz - ax = a - c (1)
mà cz + ax = b (2)
Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)
=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)
Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\); \(\frac{1}{y+1}=\frac{2b}{a+b+c}\)
=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Cho các số dương a,b,c,x,y,z thỏa mãn các điều kiện a+b+c =9 , ax+by+cz = xyz . Chứng minh rằng : x + y + z > 6
Cho các số a, b, c, x, y, z thoả mãn a, b, c khác −2 và 2x=by+cz, 2y=cz+ax, 2z=ax+by . Tính giá trị biểu thức
\(2x-2y=by+cz-cz-ax=by-ax\)
\(\Rightarrow2x-2y=by-ax\)
\(\Rightarrow2x+ax=2y+by\)
\(\Rightarrow x\left(a+2\right)=y\left(b+2\right)\)
\(\Rightarrow a+2=\dfrac{y\left(b+2\right)}{x}\)
\(2z-2y=ax+by-cz-ax=by-cz\)
\(\Rightarrow2z+cz=2y+by\)
\(\Rightarrow z\left(c+2\right)=y\left(b+2\right)\)
\(\Rightarrow c+2=\dfrac{y\left(b+2\right)}{z}\)
\(A=\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}=\dfrac{2}{\dfrac{y\left(b+2\right)}{x}}+\dfrac{2}{b+2}+\dfrac{2}{\dfrac{y\left(b+2\right)}{z}}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2}{b+2}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x}{y\left(b+2\right)}+\dfrac{2y}{y\left(b+2\right)}+\dfrac{2z}{y\left(b+2\right)}=\dfrac{2x+2y+2z}{y\left(b+2\right)}=\dfrac{by+cz+cz+ax+ax+by}{by+2y}=\dfrac{2\left(ax+by+cz\right)}{by+cz+ax}=2\)
Cho các số \(a,b,c\ne1\) và các số \(x,y,z\) thỏa mãn điều kiện \(x=by+cz,y=cz+ax,z=ax+by\)
Tính giá trị của biểu thức \(A=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
Dành cho các bạn chuyên toán nè? | Yahoo Hỏi & Đáp
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
bạn có thể cm HỘ MÌNH bdt bUNHIA ĐC KO AK
Cho các số dương a,b,c,x,y,z thỏa mãn a+b+c=x+y+z. Chứng minh rằng: ax(a+x)+by(b+y)+cz(c+z)\(\ge\)3(abc+xyz)