cho x+y+z=2; xy+yz+zx=-5 và xyz=-5. tính x^3+y^3+z^3
1a. Cho x^2+y^2=2.CMR 2(x+1)(y+1) chia hết cho (x+y)(x+y+2)
b. Cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y). CMR z^2=(x^2+y^2):2
toi ko bit lam chi biet lam anh thui
ban biet lam cau hoi minh vua gui ko
Cho x^2/x+y + y^2/y+z + z^2/z+x =2017
Tính: y^2/x+y + z^2/y+z + x^2/x+z -3
Cho x/y+z + y/x+z + z/x+y = 2. Chứng minh x^2/(y+z) + y^2/(x+z)+ z^2/(x+y)=x+y+z
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
Cho : (x+y) (x+z) (y+z) (y+x) = 2 (z+x) (z+y) CMR z^2 = (x^2+y^2)/2
Lời giải:
$(x+y)(x+z)(y+z)(y+x)=2(z+x)(z+y)$
$\Leftrightarrow (z+x)(z+y)[(x+y)^2-2]=0$
$\Leftrightarrow x+z=0$ hoặc $z+y=0$ hoặc $(x+y)^2=2$
Nếu $z+x=0\Leftrightarrow x=-z$
$z^2=x^2$ không có cơ sở bằng $\frac{x^2+y^2}{2}$
Bạn xem lại đề.
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
Cho x / 2014 = y / 2015 = z / 1016 Chứng minh rằng 4(x - y) . (y - z) = (z - x)^2
Cho x / y = y / z Chứng minh rằng x^2 + y^2 / y^2 + x^2 = x / z
bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx
suppose that x( x + y + z ) = 2; y( x + y + z ) = 25; z( x + y + z ) = -2;
Dịch: Cho x(x+ y + z) = 2; y(x + y + z) = 25; z (x + y + z) = -2. Tìm x; y ;z ( x> 0)
x(x+y+z) + y(x+y+z) + z(x+y+z) = 2 + 25 - 2 = 25
=> ( x+ y+ z )(x+y+z) = 25
=> x + y+ z = 5 hoặc x + y +z = -5
(+) x + y +z = 5 => x.5 = 2 => x = 2/5
=> y.5=5 => y = 1
=> z.5 = -2 => z = -2/5
(+) x+ y+ z = -5 => -5x = 2 => x= -2/5 (loại x > 0)
Vậy x = 2/5 ; y = 1 ; z = -2/5
Cho : (x+y) (x+z) (y+z) (y+x) = 2 (z+x) (z+y) CMR z^2 = (x^2+y^2)/2
Cho x/(y-z)+y/(z-x)+z/(x-y)=0 cm x/(y-z)^2+y/(z-x)^2+z/(x-y)^2=0
cho x^2+y^2=(x+y-z)^2 cmr x^2+(x-z)^2/y^2+(y-z)^2=x-z/y-z