Violympic toán 8

LT

Cho x/y+z + y/x+z + z/x+y = 2. Chứng minh x^2/(y+z) + y^2/(x+z)+ z^2/(x+y)=x+y+z

AH
1 tháng 12 2019 lúc 11:47

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)

\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TB
Xem chi tiết
H24
Xem chi tiết
KM
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
MN
Xem chi tiết
HN
Xem chi tiết
BB
Xem chi tiết