Cho bốn số x1; x2; x3; x4 khác 0 thoả mãn x22= x1.x3; x32= x2.x4
Chứng minh rằng: \(\frac{x1}{x4}=\left(\frac{x1+x2+x3}{x2+x3+x4}\right)^3\)
(Nhớ trình bày cụ thể nhé)
Cho bốn số x1, x2, x3, x4 khác 0 thỏa mãn x22 = x1.x3 ; x23 = x2.x4 Chứng minh rằng: x1/ x4 = (x1 x2 x3 / x2 x3 x4 ) ^3
Trong không gian Oxyz, cho bốn đường thẳng d 1 : x - 3 1 = y + 1 - 2 = z + 1 1 ; d 2 : x 1 = y - 2 = z - 1 1 ; d 3 : x - 1 2 = y + 1 1 = z - 1 1 ; d 4 : x 1 = y - 1 - 1 = z - 1 1 . Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
A. 0.
B. 2.
C. Vô số.
D. 1.
Chọn D
Đường thẳng d₁ đi qua điểm M₁ = (3;-1;-1) và có một véctơ chỉ phương là
Đường thẳng d₂ đi qua điểm M₂ = (0;0;1) và có một véctơ chỉ phương là
Do và M₁ ∉ d₁ nên hai đường thẳng d₁ và d₂ song song với nhau.
Gọi (α) là mặt phẳng chứa d₁ và d₂ khi đó (α) có một véctơ pháp tuyến là . Phương trình mặt phẳng (α) là x+y+z-1=0.
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d₁ và d₂.
Trong không gian Oxyz, cho bốn đường thẳng:
d 1 : x - 3 1 = y + 1 - 2 = z + 1 1 , d 2 : x 1 = y - 2 = z - 1 1 , d 3 : x - 1 2 = y + 1 1 = z - 1 1 , d 4 : x 1 = y - 1 - 1 = z - 1 1
Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
A. 0.
B. 2.
C. Vô số.
D. 1.
Chọn D
Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là
Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là
Do và M1 ∉ d1 nên hai đường thẳng d1 và d2 song song với nhau.
Gọi (α) là mặt phẳng chứa d1 và d2 khi đó (α) có một véctơ pháp tuyến là
Phương trình mặt phẳng (α) là x + y + z -1 = 0
Gọi A = d3 ∩ (α) thì A (1; -1; 1)
Gọi B = d4 ∩ (α) thì B (-1; 2; 0)
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d1 và d2.
Trong không gian với hệ trục tọa độ , cho bốn đường thẳng:
d 1 : x - 3 1 = y + 1 - 2 = z + 1 1 ; d 2 : x 1 = y - 2 = z - 1 1
d 3 : x - 1 2 = y + 1 1 = z - 1 1 ; d 4 : x 1 = y - 1 - 1 = z - 1
Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
A. 0
B. 2
C. Vô số.
D. 1
Chọn A
Ta có d1 song song d2, phương trình mặt phẳng chứa hai đường thẳng d1, d2 là
Mà cùng phương với véc-tơ chỉ phương của hai đường thẳng d1, d2 nên không tồn tại đường thẳng nào đồng thời cắt cả bốn đường thẳng trên.
Cho hàm số y = f(x) = ax4 + bx3 + cx2 + dx + e (a≠0) có đồ thị (C) cắt trục hoành tại bốn điểm phân biệt là A(x1; 0), B(x2 ; 0), C(x3 ; 0), D(x4;0), với x1, x2, x3, x4 theo thứ tự lập thành cấp số cộng và hai tiếp tuyến của (C) tại A, B vuông góc với nhau. Tính giá trị của biếu thức S = (f ' (x3) + f ' (x4))2020
Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)
\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)
Ta có:
\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)
Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)
Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)
Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)
\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)
\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)
Bài gì mà dễ sợ :(
Đầu tiên xác định cụ thể pt (P) ra:
(P) qua điểm \(\left(0;-3\right)\Rightarrow c=-3\)
Từ độ độ đỉnh: \(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\\dfrac{4ac-b^2}{4a}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-12a-16a^2=4a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\end{matrix}\right.\)
\(\Rightarrow y=-x^2+4x-3\)
\(\Rightarrow y'=-2x+4\)
Gọi giao điểm của \(d_1;d_2\) là A và giao điểm của \(d_1;d_2\) với Ox lần lượt là B và C \(\Rightarrow\Delta ABC\) vuông cân tại A (\(y'=-2x+4\) nên (P) không thể tồn tại 1 tiếp tuyến vuông góc trục hoành dạng \(x=k\) do đó 2 tiếp tuyến ko bao giờ vuông góc với Ox)
\(\Rightarrow AB\) tạo với trục hoành 1 góc 45 độ
\(\Rightarrow\) Hệ số góc của đường thẳng \(d_1\) là \(k=tan45^0=1\)
\(\Rightarrow y'=-2x+4=1\Rightarrow x=\dfrac{3}{2}\)
\(\Rightarrow y=\dfrac{3}{4}\)
Phương trình \(d_1\): \(y=1\left(x-\dfrac{3}{2}\right)+\dfrac{3}{4}\Leftrightarrow y=x-\dfrac{3}{4}\)
Cho hàm số y = f ( x ) = ax 3 + bx 2 + cx + d có bảng biến thiên như sau
Khi đó f x = m có bốn nghiệm phân biệt x 1 < x 2 < x 3 < 1 / 2 < x 4 khi và chỉ khi
A. .
B. .
C. .
D. .
Đáp án B
Ta có
suy ra .
Ta có: .
Bảng biến thiên của hàm số như sau:
Dựa vào bảng biến thiên suy ra phương trình có bốn nghiệm phân biệt khi và chỉ khi .
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có bảng biến thiên như sau
Khi đó | f ( x ) | = m có bốn nghiệm phân biệt x 1 < x 2 < x 3 < 1 2 < x 4 khi và chỉ khi
A. 0 < m ≤ 1
B. 1 2 < m < 1
C. 1 2 ≤ m < 1
D. 0 < m < 1
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = m + 1 x 4 - 2 2 m - 3 x 2 + 6 m + 5 cắt trục hoành tại bốn điểm phân biệt có các hoành độ x 1 , x 2 , x 3 , x 4 thỏa mãn x 1 < x 2 < x 3 < 1 < x 4
A. m ∈ - 1 ; - 5 6
B. m ∈ - 3 ; - 1
C. m ∈ - 3 ; 1
D. m ∈ - 4 ; - 1
cho bốn chữ số 0,2,4,1 viết được tất cả bao nhiêu số tự nhiên có bốn chữ số khác nhau từ bốn chữ số đã cho
Hàng nghìn: Có 3 cách chọn
Hàng trăm: Có 3 cách chọn
Hàng chục: Có 2 cách chọn
Hàng đơn vị: Có 1 cách chọn
Số các số có 4 chữ số khác nhau lập được từ 4 số trên là:
3 x 3 x 2 x 1 = 18 ( số )
Đáp số: 18 số