Những câu hỏi liên quan
HT
Xem chi tiết
LH
14 tháng 7 2021 lúc 23:28

Đk:\(x\ge3;y\ge2021\)

\(A=x+y-\sqrt{x-3}.\sqrt{y-2021}\)

\(\Leftrightarrow A=\left(x-3\right)-\sqrt{x-3}.\sqrt{y-2021}+\dfrac{1}{4}\left(y-2021\right)+\dfrac{3}{4}\left(y-2021\right)+2024\)

\(\Leftrightarrow A=\left(\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}\right)^2+\dfrac{3}{4}\left(y-2021\right)+2024\ge2024\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y-2021=0\\\sqrt{x-3}-\dfrac{1}{2}\sqrt{y-2021}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=2021\\x=3\end{matrix}\right.\) (tm)

Vậy...

Bình luận (0)
LJ
Xem chi tiết
LP
2 tháng 3 2018 lúc 20:52

x=5

y=0

Bình luận (0)
H24
2 tháng 3 2018 lúc 20:57

Ta có : \(x+2y+xy=5\)

\(\Rightarrow x+y+xy=2.5\)

Từ đó ta có x= 5 và y =0

Bình luận (0)
H24
2 tháng 3 2018 lúc 20:59

x +2y + xy = 5

=> x(y+1) + 2y + 2 = 5 + 2

=> x(y+1) + 2(y+1) = 7

=> (x+2)(y+1) = 7

=> bảng sau:

x+2-1-717
y+1-7-171
x-3-9-15
y-8-260

vậy các cặp (x;y) nguyên thỏa mãn là : (-3;-8);(-9;-2);(-1;6);(5;0)

Bình luận (0)
H24
Xem chi tiết
H24
15 tháng 7 2021 lúc 15:18

Áp dụng bđt cosi cho 2 số không âm ta có:

`x+4>=4sqrtx`

`y+1>=2sqrty`

`=>(x+4)(y+1)>=8sqrt{xy}`

Mà đề bài cho `(x+4)(y+1)=8sqrt(xy)`

Dấu "=" xảy ra khi `x=4,y=1`

`=>T=4+1^2021=4+1=5`

Bình luận (0)
PD
Xem chi tiết
PN
9 tháng 4 2019 lúc 22:31

Vì \(x^2+3^y=35\)nên \(3^y< 35\)

Vì \(3^3=27\),\(3^4=108>35\)

\(\Rightarrow y\in(1;2;3)\)

Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)

Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)

Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)

Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)

Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)

Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)

Vậy không có x,y để thỏa mãn điều  kiện của đề bài.

Bình luận (0)
MT
6 tháng 3 2020 lúc 15:06

để mị nói cho mà nge

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
PQ
8 tháng 4 2020 lúc 15:49
Bạn ơi có bị sai đầu bài không vậy?? Mình nghĩ là sai đầu bài rồi
Bình luận (0)
 Khách vãng lai đã xóa
TD
8 tháng 4 2020 lúc 21:46

đề sai nhá. thử số là biết

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 4 2020 lúc 9:00

Đề là < nhá!

Có:\(2\sqrt{2\left(x^2+y^2\right)}\ge2\left(x+y\right)=\left(x^3+y^3\right)\left(x+y\right)\ge\sqrt{\left(x^2+y^2\right)^4}\)

Từ đó suy ra đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
MN
7 tháng 6 2021 lúc 22:02

\(x+y=1\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)

=> \(A=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\ge1^2-3\cdot\frac{1}{4}\cdot1=\frac{1}{4}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
DH
7 tháng 6 2021 lúc 22:05

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\ge1-3.\frac{1}{4}=\frac{1}{4}\)

Dấu \(=\)khi \(x=y=\frac{1}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
TS
Xem chi tiết
MH
27 tháng 3 2023 lúc 13:25

+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)

\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)

\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)

+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)

\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)

\(=x+y+z+9=10\)

\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)

Bình luận (0)
CB
Xem chi tiết
AH
30 tháng 4 2023 lúc 19:38

Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{a^2}{4}+b^2\geq 2\sqrt{\frac{a^2}{4}.b^2}=ab$

$\frac{a^2}{4}+c^2\geq ac$

$\frac{a^2}{4}+x^2\geq ax$

$\frac{a^2}{4}+y^2\geq ay$

Cộng theo vế các BĐT trên ta có:
$a^2+b^2+c^2+x^2+y^2\geq ab+ac+ax+ay=a(b+c+x+y)$ (đpcm)

Bình luận (0)
QN
Xem chi tiết
H24
Xem chi tiết
MH
2 tháng 4 2023 lúc 22:22

Xét hàm \(h\left(t\right)=f\left(t\right)-m.g\left(t\right)\)

Với \(\left\{{}\begin{matrix}f\left(t\right)=\sqrt{3t^2+1}\\g\left(t\right)=t\\m=\dfrac{f'\left(\dfrac{1}{3}\right)}{g'\left(\dfrac{1}{3}\right)}=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Vậy xét hàm: \(h\left(t\right)=\sqrt{3t^2+1}-\dfrac{\sqrt{3}}{2}t\)

\(\Rightarrow h'\left(t\right)=\dfrac{3t}{\sqrt{3t^2+1}}-\dfrac{\sqrt{3}}{2}\)\(\Rightarrow h'\left(t\right)=0\Leftrightarrow t=\dfrac{1}{3}\)

Bảng biến thiên

Theo bảng biến thiên:

\(h\left(t\right)\ge\dfrac{\sqrt{3}}{2}\)\(\Rightarrow\sqrt{3t^2+1}\ge\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}t\)

\(\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\ge\dfrac{3\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}=2\sqrt{3}\left(x+y+z=1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Bình luận (0)
MH
2 tháng 4 2023 lúc 22:26

Trên mình tìm nhầm thành min gòi, mà bài này tìm max nên làm như này nhé 

Vì \(x,y,z\in\left[0,1\right]\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\)

\(\sqrt{3x^2+1}\le\sqrt{x^2+2x+1}=x+1\)

Tương tự:

\(\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\le x+y+z+3=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị của nó

Bình luận (0)