Những câu hỏi liên quan
TN
Xem chi tiết
LH
7 tháng 7 2021 lúc 8:29

Có \(x+y=7+4\sqrt{3}+7-4\sqrt{3}=14\)

\(xy=\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)\(=2702\left[\left(x^2+y^2\right)^2-2x^2y^2\right]-14\)

\(=2702\left(194^2-2\right)-14=101687054\)

Vậy...

Bình luận (0)
TN
Xem chi tiết
NL
6 tháng 7 2021 lúc 17:58

\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)

Bình luận (0)
MM
Xem chi tiết
CB
7 tháng 6 2017 lúc 13:56

( 2 x y + 2/15 ) x 3 = 4/5

( 2 x y + 2/15 )      = 4/5 : 3 

( 2 x y + 2/15 )      =   4/15

 2 x y                    = 4/15 - 2/15 

2 x y                     =     2/15

     y                      =     2/15 :2 

   y                          =    1/15

Bình luận (0)
DP
7 tháng 6 2017 lúc 14:11

(2 x y + 2/15) x 3 = 4/5 

2 x y + 2/15) = 4/5 : 3 

2 x y + 2/15 = 4/15 

2 x y = 4/15 - 2/15 

2 x y = 2/15 

y = 2/15 : 2 

y = 1/15 

7/9 x (2 - 1/3 x y) = 14/15 

(2 - 1/3 x y) = 14/15 : 7/9 

(2 - 1/3 x y) = 6/5 

2 - y = 6/5 x 1/3 

2 - y = 2/5 

y = 2/5 + 2 

y = 12/5 

4/21 + 5 x y - 8/7 = 1/3 

4/21 + 5 x y = 1/3 + 8/7 

4/21 + 5 x y = 31/21 

5 x y = 31/21 - 4/21 

5 x y = 9/7 

y = 9/7 : 5 

y = 9/35 

7/12 x y - 3/12 x y = 5 

y x (7/12 - 3/12) = 5 

y x 1/3 = 5 

y = 5 : 1/3 

y = 15 

Bình luận (0)
NL
Xem chi tiết
DD
20 tháng 4 2022 lúc 21:37

...

Bình luận (0)
NL
23 tháng 4 2022 lúc 11:13

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

Bình luận (0)
NK
Xem chi tiết
HM
30 tháng 5 2021 lúc 21:29

1)\(\left(x+1\right).\left(y-2\right)=0\)                                       \(\left(x,y\inℤ\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

2)\(\left(x-5\right).\left(y-7\right)=1\)

x-51-1
y-71-1
x64
y86

3)\(\left(x+4\right).\left(y-2\right)=2\)

x+412-1-2
y-221-2-1
x-3-2-5-6
y4301

4)\(\left(x-4\right).\left(y+3\right)=-3\)

x-41-13-3
y+3-33-11
x5371
y-60-4-2

5)\(\left(x+3\right).\left(y-6\right)=-4\)

x+3-11-442-2
y-64-41-1-22
x-4-2-71-1-5
y1027548

6)\(\left(x-8\right).\left(y+7\right)=5\)

x-815-1-5
y+751-5-1
x91373
y-2-6-12-8

7)\(\left(x+7\right).\left(y-3\right)=-6\)

x+7-11-66-22-33
y-36-61-13-32-2
x-8-6-13-1-9-5-10-4
y9-3426051

8)\(\left(x-6\right).\left(y+2\right)=7\)

x-617-1-7
y+271-7-1
x7135-1
y5-1-9-3

ok :)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
My
28 tháng 1 2018 lúc 14:12

3-x và 7-y € Ư(5)

Mà Ư(5)= {1;5;-1;-5}

Ta có bảng sau:

3-x15-1-5
7-y51-5-1
x2-248
y26128
Bình luận (0)
My
28 tháng 1 2018 lúc 14:28

4-x và y+3 € Ư(-3)

Mà Ư(-3)={1;3;-1;-3}

Ta có bảng sau:

4-x1-3-13
Y+3-313-1
x3751
y-6-20-4
Bình luận (0)
My
28 tháng 1 2018 lúc 14:32

=> 5-x và y-7 € Ư(-7)

Mà Ư(-7)={1;7;-1;-7}

Ta có bảng sau:

5-x-17-71
y-77-11-7
x6-2124
y14680
Bình luận (0)
DC
Xem chi tiết
NM
8 tháng 11 2021 lúc 10:04

\(=x\left(3x-7y\right)-\left(3x-7y\right)=\left(x-1\right)\left(3x-7y\right)\)

Bình luận (0)
MH
Xem chi tiết
AH
28 tháng 10 2021 lúc 17:53

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

Bình luận (0)
AH
28 tháng 10 2021 lúc 17:58

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

Bình luận (0)
AH
28 tháng 10 2021 lúc 18:04

1c. Sử dụng kq phần a,b:

\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)

\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)

\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)

\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)

(đpcm)

1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$

$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)

 

Bình luận (0)
KA
Xem chi tiết
PK
Xem chi tiết