Những câu hỏi liên quan
YP
Xem chi tiết
NT
18 tháng 12 2021 lúc 11:55

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{180}{5}=36\)

Do đó: x=72; y=108

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
FF
17 tháng 8 2016 lúc 15:28

1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải

(x+y)^2=x^2+y^2+2xy => xy= -3 
x^3+y^3=(x+y)^3-3xy(x+y) = 26

2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)

(x+y)^2=a^2

=> x^2 +2xy +y^2=a^2

=> b+2xy=a^2

=> xy=\(\frac{a^2-b}{2}\)

Thay (1) vào đó ta có:

x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)

Bình luận (0)
NT
17 tháng 8 2016 lúc 15:21

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)

Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)

Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)

Bình luận (0)
NT
17 tháng 8 2016 lúc 15:26

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-xy\right)\)

Bình luận (0)
DN
Xem chi tiết
KT
23 tháng 7 2018 lúc 20:12

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

Bình luận (0)
KT
23 tháng 7 2018 lúc 20:10

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

Bình luận (0)
LN
Xem chi tiết
NT
16 tháng 2 2021 lúc 20:33

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

Bình luận (1)
NC
16 tháng 2 2021 lúc 20:35

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

Bình luận (0)
NT
Xem chi tiết
H24
14 tháng 9 2020 lúc 19:48

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
14 tháng 9 2020 lúc 19:53

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 9 2020 lúc 19:53

d đâu bạn

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TT
14 tháng 6 2016 lúc 17:49

Các bài này đưa về dạng Hằng đẳng thức là được . Làm ra dài lắm bạn ạ !

Bình luận (0)
HP
14 tháng 6 2016 lúc 18:09

Ns nghe dễ lắm, lm thử đee =))

Bình luận (0)
DL
14 tháng 6 2016 lúc 18:12

A. \(x+y=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Rightarrow x^3+3xy\cdot\left(x+y\right)+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)

B. \(x-y=1\Rightarrow\left(x-y\right)^3=1\Rightarrow x^3-3x^2y+3xy^2-y^3=1\)

\(\Rightarrow x^3-3xy\cdot\left(x-y\right)-y^3=1\)

\(\Rightarrow x^3-3xy-y^3=1\)

C. \(M=a^3+b^3+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(M=a^3+b^3+3ab\left(1-2ab\right)+6a^2b^2=a^3+b^3+3ab-6a^2b^2+6a^2b^2\)

\(M=a^3+b^3+3ab=1\)(Theo hệ quả câu A).

D. Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Mà, \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Leftrightarrow2^3=x^3+y^3+3\left(-2\right)\cdot2\Leftrightarrow x^3+y^3=8+12=20\)

Bình luận (0)
HT
Xem chi tiết
NM
Xem chi tiết
NT
8 tháng 9 2023 lúc 7:26

Bài 1 :

a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)

\(\Rightarrow M=-2x^2y^2\)

Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)

\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)

\(\Rightarrow M=-2.2.3=-12\)

b) \(N=xy.\sqrt[]{5x^2}\)

\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)

\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

Khi \(x=-2< 0;y=\sqrt[]{5}\)

\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)

Bình luận (0)
NT
7 tháng 9 2023 lúc 21:22

2:

Tổng của 4 đơn thức là;

\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)

=>Khi x=-6 và y=15 thì A=0

 

Bình luận (0)