Những câu hỏi liên quan
BB
Xem chi tiết
NT
Xem chi tiết
TD
28 tháng 4 2020 lúc 9:15

Ta có a + b > c ; b + c > a ; a + c > b

\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
NL
Xem chi tiết
PN
10 tháng 1 2016 lúc 22:08

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(\left(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\right)\left(1+\frac{a}{c}\right)=8\)

\(\Leftrightarrow\)  \(1+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+1=8\)

\(\Leftrightarrow\)  \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{c}{b}+\frac{b}{c}-2\right)+\left(\frac{c}{a}+\frac{a}{c}-2\right)=0\)

\(\Leftrightarrow\)  \(\frac{a^2+b^2-2ab}{ab}+\frac{c^2+b^2-2bc}{bc}+\frac{c^2+a^2-2ac}{ac}=0\)

\(\Leftrightarrow\)  \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(c-b\right)^2}{bc}+\frac{\left(c-a\right)^2}{ac}=0\)

\(\Leftrightarrow\)  \(a-b=c-b=c-a\)  \(\Leftrightarrow\)  \(a=b=c\)  

Với   \(a,b,c\)   là  \(3\)  cạnh của \(\Delta ABC\)  thì  \(\Delta ABC\)  đều

Bình luận (0)
CV
Xem chi tiết

Vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác

\(\Rightarrow\hept{\begin{cases}a+b>c;b+c>a;c+a>b\\a+b;b+c;c+a< a+b+c\end{cases}}\)

Ta có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+c+a+c}=\frac{2}{2\left(a+c\right)}=\frac{1}{a+c}\)

Chứng minh tương tự , ta được: \(\frac{1}{b+c}+\frac{1}{c+a}>\frac{1}{a+b}\)

                                                     \(\frac{1}{c+a}+\frac{1}{a+b}>\frac{1}{b+c}\)

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
YT
Xem chi tiết
YY
28 tháng 5 2018 lúc 16:49

3 cạnh của một tam giác là ba số dương 

áp dụng bất đẳng thức cauchy cho hai số dương

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8abc\)\

Dấu "=" xảy ra khi a = b = c

mà a,b,c  là 3 cạnh của một tam giác đều => a=b=c => (a+b)(b+c)(c+a)=8abc

Bình luận (0)
LP
28 tháng 5 2018 lúc 16:57

a,b,c là 3 cạnh tam giác nên a>0,b>0,c>0

\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2=8abc\)

\(\Leftrightarrow a^2b+bc^2+ab^2+ac^2+a^2c+ac^2-6abc=0\)

\(\Leftrightarrow\left(a^2b+bc^2-2abc\right)+\left(ab^2+ac^2-2abc\right)+\left(a^2c+b^2c-2abc\right)=0\)

\(\Leftrightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

\(\Leftrightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2=0\)

Mà b>0;(a-c)^2>=0 => b(a-c)^2>=0;

a>0;(b-c)^2>=0 => a(b-c)^2 >=0;

c>0;(a-b)^2>=0 => c(a-b)^2>=0

Do đó: \(b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a-c=0\\b-c=0\\a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=c\\b=c\\a=b\end{cases}}}\Leftrightarrow a=b=c\)

=> a,b,c là 3 cạnh của một tam giác đều

Bình luận (0)
TD
Xem chi tiết
HP
20 tháng 7 2016 lúc 11:01

\(a^3+b^3+c^3-3abc=0\)

\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)

\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0

\(=>a+b+c\ne0\)

\(=>a^2+b^2+c^2-ab-bc-ac=0\)

\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)

Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)

Vậy tam giác đã cho là tam giác đều

Bình luận (1)
HV
Xem chi tiết
CX
9 tháng 12 2021 lúc 8:06

Tham khảo

 

Program Bai1;

Uses crt;

Var a,b,c:integer;

Begin

CLRSCR;

Write('a='); Readln(a);

Write('b='); Readln(b);

Write('c='); Readln(c);

If (a*a=b*b+c*c) then Write('a,b,c la cac canh cua 1 tam giac vuong')

else('a,b,c khong phai la cac canh cua 1 tam giac vuong');

Readln

END.

Bình luận (0)
LN
Xem chi tiết
AN
10 tháng 11 2016 lúc 20:30

Vì m, n, p là độ dài 3 cạnh tam giác vuông (p là cạnh huyền) nên

p2 = m2 + n2

Ta có: a2 - b2 - c2 = (4m + 8n + 9p)2 - (m + 4n + 4p)2 - (4m + 7n + 8p)2

= - n2 + p2 - m2 = 0

=> a2 = b2 + c2

Vậy a, b, c cũng là độ dài ba cạnh tam giác vuông. Và cạnh huyền là a

Bình luận (0)
TT
Xem chi tiết
FD
10 tháng 11 2018 lúc 5:37

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Bình luận (0)