Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
LS
Xem chi tiết
CH
22 tháng 11 2016 lúc 11:10

Đường tròn c: Đường tròn qua A với tâm O Đường tròn d: Đường tròn qua A với tâm E_1 Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h_1: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [C, K] Đoạn thẳng k: Đoạn thẳng [H, B] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng O_1: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [B, E] Đoạn thẳng n: Đoạn thẳng [D, C] Đoạn thẳng p: Đoạn thẳng [K, H] Đoạn thẳng r: Đoạn thẳng [A, J] A = (-1.14, 6.9) A = (-1.14, 6.9) A = (-1.14, 6.9) B = (-2.7, 1.44) B = (-2.7, 1.44) B = (-2.7, 1.44) C = (5.44, 1.46) C = (5.44, 1.46) C = (5.44, 1.46) Điểm H: Giao điểm của i, h_1 Điểm H: Giao điểm của i, h_1 Điểm H: Giao điểm của i, h_1 Điểm K: Giao điểm của j, f Điểm K: Giao điểm của j, f Điểm K: Giao điểm của j, f Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm E: Giao điểm của d, h Điểm E: Giao điểm của d, h Điểm E: Giao điểm của d, h Điểm J: Giao điểm của c, d Điểm J: Giao điểm của c, d Điểm J: Giao điểm của c, d I

Kẻ đường cao AJ, trực tâm của tam giác là I. Khi đó AKIH là tứ giác nội tiếp nên \(\widehat{AKH}=\widehat{AIH}\) (Cùng chắn cung AH)

Lại có \(\widehat{AIH}=\widehat{ACB}\) (Cùng phụ với \(\widehat{HAI}\) ). Vậy thì \(\widehat{AKH}=\widehat{ACB}\)

Vậy thì \(\Delta AKH\sim\Delta ACB\left(g-g\right)\Rightarrow\frac{AK}{AC}=\frac{AH}{AB}\Rightarrow AK.AB=AH.AC\left(1\right)\)

Xét tam giác vuông ABE, áp dụng hệ thức lượng ta có AE2 = AK.AB. Tương tự AD2 = AH.AC  (2)

Từ (1) và (2) suy ra AE = AD (đpcm)

Bình luận (0)
NA
Xem chi tiết
NT
16 tháng 8 2021 lúc 22:16

a: Xét ΔABH vuông tại H và ΔACI vuông tại I có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACI

Suy ra: BH=CI

Bình luận (1)
TV
Xem chi tiết
LL
Xem chi tiết
TH
26 tháng 3 2022 lúc 21:08

△AKC∼△AHB (g-g) \(\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}=\dfrac{AC-CK}{AB-BH}=1\)

\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A.

\(AB\ge BH\Rightarrow AB+CK\ge BH+CK\Rightarrow AC+BH\ge BH+CK\Rightarrow AC\ge CK\)-Dấu bằng xảy ra khi và chỉ khi \(A\equiv H\Leftrightarrow\)△ABC vuông tại A.

Bình luận (0)
TN
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
HN
19 tháng 11 2016 lúc 18:10

A B C K H E D

Ta dễ dàng chứng minh được tam giác AKH đồng dạng tam giác ACB (g.g)

=> \(\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow AH.AC=AK.AB\)             (*)

Vì tam giác ADC và tam giác AEB lần lượt nội tiếp các đường tròn đường kính AC và AB nên là các tam

giác vuông, đồng thời các đường cao tương ứng là DH và EK

Áp dụng hệ thức về cạnh trong tam giác vuông được \(AD^2=AH.AC\) , \(AE^2=AK.AB\)

Từ  (*) ta suy ra \(AD^2=AE^2\Rightarrow AD=AE\)

Vậy tam giác ADE là tam giác cân tại A. (đpcm)

Bình luận (0)
H24
18 tháng 11 2016 lúc 16:22

bài này dễ mà

Bình luận (0)
TT
19 tháng 11 2016 lúc 16:10

dể sao không  làm

Bình luận (0)