Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y=2+ 3sin3x
A. min y = -2 ; max y= 5
B. min y= -1 ; max y= 4
C. miny= - 1; max y= 5
D.min y= - 5 ; max y= 5
Tìm giá trị lớn nhất của hàm số y = 2 - 3 sin 3 x + 4 cos 3 x trên R.
A. m a x R y = 7
B. m a x R y = 5
C. m a x R y = 9
D. m a x R y = 3
Tìm giá trị lớn nhất của hàm số y=2-3sin3x+4cos3x trên R
A.
B.
C.
D.
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sin x + 2 - sin 2 x
A. miny=0; max y= 3
B. min y= 0; max y= 4
C.min y= 0; max y= 6
D. min y= 0; max y = 2
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bạc hai y = -2x2 + 4x + 3
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = -3x2 + 2x + 1 trên (1;3)
tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bậc hai y = x2 - 4x - 5 trên (-1;4)
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Câu 3:
$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$
Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$
Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$
Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau: y = 2 . sin x + 3
A . m a x y = 5 , m i n y = 2
B . m a x y = 5 , m i n y = 3
C . m a x y = 5 , m i n y = 1
D . m a x y = 5 , m i n y = 2 5
Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sin 2 24 + 3 cos 4 x 2 cos 2 2 x - sin 4 x + 2
Giá trị lớn nhất của hàm số y = 3sin3x-4cos3x+5 ?
A. 5
B.10
C.4
D.12
Đáp án B
3sin3x - 4cos3x ≤ 3 2 + ( - 4 ) 2 = 5 => Maxy 5 + 5 =10
Giá trị lớn nhất của hàm số y = 3sin3x - 4cos3x + 5 ?
A. 5
B. 10
C. 4
D. 12
Đáp án B
Ta có: 3 sin 3 x - 4 cos 3 x ≤ 3 2 + - 4 2 = 5 ⇒ M a x R y = 5 + 5 = 10 .