1) Cho g(x) = 4x\(^2\) + 3x +1 ; h(x) = 3x\(^2\)- 2x - 3
a) Chứng tỏ rằng -4 là nghiệm của f(x)
c) Tìm tập hợp nghiệm của f(x)
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
OLM chỉ có phần chụp ảnh cho CTV
Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
cho g(x)= 4x^4+3x+1
h(x)=3x^2-2x-3. Tính f(x)=g(x)-h(x)
f(x)=g(x)-h(x)=4x4+3x+1-3x2+2x+3
=4x4-3x2+5x+4
\(f\left(x\right)=4x^4+3x-1-\left(3x^2-2x-3\right)=4x^4-3x^2+5x+2\)
ta có
góc HAD+ góc CAK=180*-BAC=180*-90*=90*
góc CAK+ góc ACK=180*-90*=90*
=> góc HAD=góc ACK
xét 2 tam giác vuông AHB và CKA có:
AB=AC(gt)
góc HAD=góc ACK(cmt)
=> tam giác AHB=tam giác CKA(CH-GN)
=> AH=CK(đfcm)
b) theo câu a, ta có tam giác AHB=tam giác CKA(CH-GN)
=> AK=BH
ta có: HK=AH+AK=CK+BH(đfcm)
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
Cho hai đa thức f(x) = 2x2 - 3x + x5 - 4x3 +4x -x5 +x2 -2
g(x) = x3 - 2x2 + 3x +1 +2x2
Xác định các hệ số a, b sao cho f(1) = g(2) và f(-1) = g(5)
mọi người cố gắng giúp mình, mình cần gấp đáp án
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
Bài 1 ( Nếu k làm đc hàng ngang thì đặt cột dọc làm cx đc ạ )
a) ( 2x^4-5x^2+x^3-3-3x):(x^2-3)
b)(2x^3+5x^2+3):(2x^2-x+1)
c) (2x+4y)^2 : (x+2y)-(9x^3-12x^2-3x):(-3x)-3(x^2+3)
Bài 2 : [Đặt tính chia cột dọc ( làm ra vỏe chụp càng tốt ạ )] Thực hiện phép chia f(x) cho g(x) để tìm thương và dư :
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3;g(x)= 1+2x-4x
cho
f(x)=4x^2-11x+8x^3+4x^4+5+2x^2 và g(x)=-5x^3-6x^2-4x^4+9+5x-3x^3.Tính
F(-1)+g(-1) và f(1)-g(1)
cho
f(x)=4x^2-11x+8x^3+4x^4+5+2x^2 và g(x)=-5x^3-6x^2-4x^4+9+5x-3x^3.Tính
F(-1)+g(-1) và f(1)-g(1)